I. Introduction
Structured prediction and NLP

- **Structured prediction**: a machine learning framework for predicting structured, constrained, and interdependent outputs
- **NLP** deals with *structured* and *ambiguous* textual data:
 - machine translation
 - speech recognition
 - syntactic parsing
 - semantic parsing
 - information extraction
 - ...
Examples of structure in NLP

Dependency parsing

...
Examples of structure in NLP

Dependency parsing

Exponentially many parse trees!
Cannot enumerate.
Examples of structure in NLP

POS tagging

- **VERB**
 - dog
 - PREP on
 - NOUN wheels

- **NOUN**
 - dog
 - PREP on
 - NOUN wheels

- **NOUN**
 - dog
 - DET on
 - NOUN wheels

Dependency parsing

- ... (diagram with arrows)
- dog on wheels

Word alignments

- dog on wheels
- hond on wielen

Exponentially many parse trees!

Cannot enumerate.

deep-spin.github.io/tutorial
NLP 5 years ago:
Structured prediction and pipelines
NLP 5 years ago:
Structured prediction and pipelines

- Big pipeline systems, connecting different structured predictors, trained separately
- **Advantages**: fast and simple to train, can rearrange pieces 😊
NLP 5 years ago:
Structured prediction and pipelines

- Big pipeline systems, connecting different structured predictors, trained separately
- **Advantages:** fast and simple to train, can rearrange pieces 😊
- **Disadvantage:** linguistic annotations required for each component 😕
NLP 5 years ago:
Structured prediction and pipelines

- Big pipeline systems, connecting different structured predictors, trained separately
- **Advantages:** fast and simple to train, can rearrange pieces 😊
- **Disadvantage:** linguistic annotations required for each component 😞
- **Bigger disadvantage:** error propagates through the pipeline 💩
NLP today:
End-to-end training
NLP today:
End-to-end training

- Forget pipelines—train everything from scratch!
- No more error propagation or linguistic annotations! 🎉
NLP today:
End-to-end training

- Forget pipelines—train everything from scratch!
- No more error propagation or linguistic annotations!
- Treat everything as *latent*! 🙌
• Uncover hidden representations useful for the *downstream task*.
• Neural networks are well-suited for this: *deep computation graphs*.
• Uncover hidden representations useful for the *downstream task*.
• Neural networks are well-suited for this: *deep computation graphs*.
• Neural representations are unstructured, inescrutable.
 Language data has underlying structure!
Latent structure models

• Seek *structured* hidden representations instead!
Latent structure models

- Seek *structured* hidden representations instead!
Latent structure models aren’t so new!

- They have a very long history in NLP:
 - IBM Models for SMT (latent word alignments) [Brown et al., 1993]
 - HMMs [Rabiner, 1989]
 - CRFs with hidden variables [Quattoni et al., 2007]
 - Latent PCFGs [Petrov and Klein, 2008, Cohen et al., 2012]
- Trained with EM, spectral learning, method of moments, ...
- Often, very strict assumptions (e.g. strong factorizations)
- Today, neural networks opened up some new possibilities!
Why do we love latent structure models?

• The inferred latent variables can bring us some **interpretability**
• They offer a way of injecting prior knowledge as a **structured bias**
• Hopefully: Higher predictive power with fewer model parameters
Why do we love latent structure models?

- The inferred latent variables can bring us some **interpretability**
- They offer a way of injecting prior knowledge as a **structured bias**
- Hopefully: Higher predictive power with fewer model parameters
 - smaller carbon footprint!
What this tutorial is about:

- Discrete, combinatorial latent structures
- Often the structure is inspired by some linguistic intuition
- We’ll cover both:
 - RL methods (structure built incrementally, reward coming from downstream task)
 - ... vs end-to-end differentiable approaches (global optimization, marginalization)
 - stochastic computation graphs
 - ... vs deterministic graphs.
- All plugged in discriminative neural models.
This tutorial is not about:

- It’s not about continuous latent variables
- It’s not about deep generative learning
- We won’t cover GANs, VAEs, etc.
- There are (very good) recent tutorials on deep variational models for NLP:
 - “Variational Inference and Deep Generative Models” (Schulz and Aziz, ACL 2018)
Background
To better explain the math, we'll often backtrack to *unstructured* models (where the latent variable is a categorical) before jumping to the *structured* ones.
The unstructured case: Probability simplex

Each vertex is an indicator vector, representing one class: $z_c = [0, \ldots, 0, 1 | \{z\}^c_{th\ position}, 0, \ldots, 0]$.

Points inside are probability vectors, a convex combination of classes: $p_0, \sum_c p_c = 1$.

(deep-spin.github.io/tutorial)
The unstructured case: Probability simplex

- Each vertex is an *indicator vector*, representing one class:

\[
z_c = [0, \ldots, 0, \underbrace{1}_{\text{c}^{\text{th}} \text{ position}}, 0, \ldots, 0].
\]
The unstructured case: Probability simplex

- Each vertex is an *indicator vector*, representing one class:
 \[z_c = [0, \ldots, 0, \underbrace{1}_{c^{th} \text{ position}}, 0, \ldots, 0]. \]

- Points inside are *probability vectors*, a convex combination of classes:
 \[p \geq 0, \quad \sum_c p_c = 1. \]
What’s the analogous of \triangle for a structure?

- A structured object z can be represented as a *bit vector*.
What's the analogous of \triangle for a structure?

- A structured object z can be represented as a *bit vector*.
- Example:
 - a dependency tree can be represented as a $O(L^2)$ vector indexed by arcs
 - each entry is 1 iff the arc belongs to the tree
 - **structural constraints:** not all bit vectors represent valid trees!
What’s the analogous of \triangle for a structure?

- A structured object z can be represented as a *bit vector*.

 Example:

 - a dependency tree can be represented a $O(L^2)$ vector indexed by arcs
 - each entry is 1 iff the arc belongs to the tree
 - **structural constraints:** not all bit vectors represent valid trees!

 \[z_1 = [1, 0, 0, 0, 1, 0, 0, 1]\]
 \[z_2 = [0, 0, 1, 0, 0, 1, 1, 0]\]
 \[z_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]\]
The structured case: Marginal polytope

Each vertex corresponds to one such bit vector. Points inside correspond to marginal distributions: convex combinations of structured objects

\[\mu = p_1 z_1 + \ldots + p_N z_N \mid \{z\} \text{exponentially many terms} \]

\[p_1 = 0.2, z_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1] \]

\[p_2 = 0.7, z_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0] \]

\[p_3 = 0.1, z_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0] \]

\[\mu = [0.3, 0, 0.7, 0, 0.3, 0.7, 0.7, 0.1, 0.2] \]
The structured case: Marginal polytope

- Each vertex corresponds to one such *bit vector* z
The structured case: Marginal polytope

- Each vertex corresponds to one such bit vector z
- Points inside correspond to marginal distributions: convex combinations of structured objects

$$\mu = p_1 z_1 + \ldots + p_N z_N \quad , \quad p \in \Delta.$$
(exponentially many terms)

$p_1 = 0.2, \quad z_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$

$p_2 = 0.7, \quad z_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0] \quad \Rightarrow \quad \mu = [0.3, 0.7, 0.3, 0.7, 0.7, 0.1, 0.2]$

$p_3 = 0.1, \quad z_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]$
Unstructured vs Structured

- Unstructured case: simplex Δ
- Structured case: marginal polytope \mathcal{M}
Unstructured vs Structured

- Unstructured case: simplex Δ
- Structured case: marginal polytope \mathcal{M}
Unstructured vs Structured

- Unstructured case: simplex Δ
- Structured case: marginal polytope \mathcal{M}
Computing the most likely structure is a very high-dimensional argmax.
Computing the most likely structure is a very high-dimensional argmax.

There are exponentially many structures:
(s cannot fit in memory; we cannot “loop” over s nor z)
Dealing with the combinatorial explosion

1. Incremental structures
 - Build structure **greedily**, as sequence of discrete choices (e.g., shift-reduce).
 - Scores (partial structure, action) tuples.
 - **Advantages:** flexible, rich histories.
 - **Disadvantages:** greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts
 - Optimizes **globally** (e.g. Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
 - Scores smaller parts.
 - **Advantages:** optimal, elegant, can handle hard & global constraints.
 - **Disadvantages:** strong assumptions.
The challenge of discrete choices.

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]
The challenge of discrete choices.

\[s \]

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]
The challenge of discrete choices.

<table>
<thead>
<tr>
<th>s</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$z = 1$</td>
</tr>
<tr>
<td></td>
<td>$z = 2$</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>$z = N$</td>
</tr>
</tbody>
</table>
The challenge of discrete choices.

input \(x \)

\[s = f_\theta(x) \]

\(z \)

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]

output \(\hat{y} \)

\[\hat{y} = g_\phi(z, x) \]
The challenge of discrete choices.

\[s = f_\theta(x) \]

\[\hat{y} = g_\phi(z, x) \]

\[\frac{\partial L(\hat{y}, y)}{\partial w} = ? \]
The challenge of discrete choices.

\[s = f_\theta(x) \]

\[\hat{y} = g_\phi(z, x) \]

\[\frac{\partial L(\hat{y}, y)}{\partial w} = ? \quad \text{or, essentially,} \quad \frac{\partial z}{\partial s} = ? \]
Discrete mappings are “flat”

\[
\begin{align*}
\frac{\partial z}{\partial s} &= ? \\
\end{align*}
\]
Discrete mappings are “flat”

\[s \]

<table>
<thead>
<tr>
<th>(z)</th>
<th>(\frac{\partial z}{\partial s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z = 1)</td>
<td>?</td>
</tr>
<tr>
<td>(z = 2)</td>
<td>?</td>
</tr>
<tr>
<td>(z = N)</td>
<td>?</td>
</tr>
</tbody>
</table>
Discrete mappings are “flat”

\[
s \quad z \quad s \quad \frac{\partial z}{\partial s} = ?
\]

\[
\begin{align*}
\text{s} & \quad \text{z} \\
\text{z = 1} & \quad \text{z = 2} \\
\text{z = 2} & \\
\text{...} & \\
\text{z = N} &
\end{align*}
\]
Discrete mappings are “flat”

\[s \]

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]

\[\frac{\partial z}{\partial s} = ? \]
Discrete mappings are “flat”

\[
\begin{array}{c|c}
 s & z \\
 \hline
 z = 1 & \text{ } \\
 z = 2 & \text{ } \\
 \ldots & \text{ } \\
 z = N & \text{ } \\
\end{array}
\]

\[
\frac{\partial z}{\partial s} = ?
\]
Discrete mappings are “flat”

<table>
<thead>
<tr>
<th>s</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$z = 1$</td>
</tr>
<tr>
<td></td>
<td>$z = 2$</td>
</tr>
<tr>
<td></td>
<td>\ldots</td>
</tr>
<tr>
<td></td>
<td>$z = N$</td>
</tr>
</tbody>
</table>

\[
\frac{\partial z}{\partial s} = ?
\]
Discrete mappings are “flat”

\[
s \quad z = 1 \\
\quad z = 2 \\
\quad \ldots \\
\quad z = N \\
\frac{\partial z}{\partial s} = ?
\]
Discrete mappings are “flat”

<table>
<thead>
<tr>
<th>s</th>
<th>z</th>
<th>$\frac{\partial z}{\partial s}$ = ?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$z = 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$z = 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$z = N$</td>
<td></td>
</tr>
</tbody>
</table>
Argmax

\[
\begin{align*}
 \frac{\partial z}{\partial s} &= 0 \\
 z &= 1 \\
 z &= 2 \\
 \ldots \\
 z &= N
\end{align*}
\]
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]

\[s = W_s u \]

Workarounds: circumventing the issue, bypassing discrete variables

Tackling discreteness end-to-end
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_{j} E_{x_j} \]

\[s = W_s u \]

predict topic \(c \) \((z = e_c) \)
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]
\[s = W_s u \]
\[v = \text{tanh} (W_v [u, z]) \]
\[\hat{y} = W_y v \]
\[L = (\hat{y} - y)^2 \]

predict topic \(c \) \((z = e_c)\)

Workarounds: circumventing the issue, bypassing discrete variables, tackling discreteness end-to-end.
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]

\[s = W_s u \]

\[v = \tanh(W_v[u, z]) \]

\[\hat{y} = W_y v \quad L = (\hat{y} - y)^2 \]
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \quad s = W_s u \quad v = \text{tanh}(W_v[u, z]) \quad \hat{y} = W_y v \quad L = (\hat{y} - y)^2 \]

\[\frac{\partial L}{\partial W_s} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial v} \frac{\partial v}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial W_s} \]

Workarounds:
- Circumventing the issue
- Bypassing discrete variables
- Tackling discreteness end-to-end

deeppin.github.io/tutorial
Example: Regression with latent categorization

$$u = \frac{1}{|x|} \sum_j E_j$$

Workarounds: circumventing the issue, bypassing discrete variables

$$L = (\hat{y} - y)^2$$
Example: Regression with latent categorization

$u = \frac{1}{|x|} \sum_j E_{x_j}$

$s = W_s u$

$v = \text{tanh} (W_v [u, z])$

$\hat{y} = W_y v$

$L = (\hat{y} - y)^2$

Option 1. Pretrain latent classifier W_s
Example: Regression with latent categorization

Option 2. Multi-task learning

Input x

Embeddings E

$$u = \frac{1}{|x|} \sum_j E_{x_j}$$

E_s

$$s = W_s u$$

W_s

W_v

W_y

Output \hat{y}

$$v = \tanh (W_v [u, z])$$

$$\hat{y} = W_y v$$

$$L = (\hat{y} - y)^2$$

Workarounds: circumventing the issue, bypassing discrete variables

Tackling discreteness end-to-end
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]

Tackling discreteness end-to-end

Output \(\hat{y} \)

\[L = (\hat{y} - y)^2 \]
Example: Regression with latent categorization

\[
\begin{align*}
\text{input } x & \quad u & \quad W_s & \quad S & \quad Z & \quad v & \quad \text{output } \hat{y} \\
\text{embeddings } E & \Rightarrow & W_s & \Rightarrow & (c) & \Rightarrow & W_v & \Rightarrow \text{output } \hat{y} \\
\end{align*}
\]

\[
\begin{align*}
u &= \frac{1}{|x|} \sum_j E_{xj} \\
s &= W_s u \\
v &= \tanh (W_v[u, z]) \\
\hat{y} &= W_y v \\
L &= E_z (\hat{y} - y)^2
\end{align*}
\]

Option 3. Stochasticity! \[
\frac{\partial E_z (\hat{y}(z) - y)^2}{\partial W_s} \neq 0
\]
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]
\[s = W_s u \]
\[v = \tanh (W_v [u, z]) \]
\[\hat{y} = W_y v \]
\[L = (\hat{y} - y)^2 \]

Option 4. Gradient surrogates (e.g. straight-through, \(\frac{\partial z}{\partial s} \leftarrow I \))
Example: Regression with latent categorization

Option 5. Continuous relaxation (e.g. softmax)

\[
u = \frac{1}{|x|} \sum_j E_{x_j}
\]

\[
u = W_s u
\]

\[
v = \tanh (W_v [u, p])
\]

\[
\hat{y} = W_y v \quad L = (\hat{y} - y)^2
\]
Dealing with discrete latent variables

1. Pre-train external classifier
2. Multi-task learning
3. Stochastic latent variables
4. Gradient surrogates
5. Continuous relaxation
Dealing with discrete latent variables

1. Pre-train external classifier
2. Multi-task learning
3. Stochastic latent variables (Part 2)
4. Gradient surrogates (Part 3)
5. Continuous relaxation (Part 4)
Roadmap of the tutorial

- Part 1: Introduction ✓
- Part 2: Reinforcement learning
- Part 3: Gradient surrogates

Coffee Break

- Part 4: End-to-end differentiable models
- Part 5: Conclusions
II. Reinforcement Learning Methods
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\),

\[\text{we can make a prediction } ^\ast y(z; x), \]

\[\text{and incur a loss, } L\left(^\ast y(z; x), y\right) \text{ or simply } L(z) \]

But we don't know \(z\)!

In this section: we jointly learn a structured prediction model \(\pi_{\theta}(z|x)\) by optimizing the expected loss,

\[\mathbb{E}_{\pi_{\theta}}(z|x) L(z) \]
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\)
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its known parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,

\[
L(\hat{y}(z; x), y)
\]
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,

\[
L(\hat{y}(z; x), y) \text{ or simply } L(z)
\]
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,

\[L(\hat{y}(z; x), y) \] or simply \(L(z) \)

- But we don't know \(z\)!
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,

\[
L(\hat{y}(z; x), y) \text{ or simply } L(z)
\]

- But we don’t know \(z\)!
- In this section:
 - we jointly learn a structured prediction model \(\pi_{\theta}(z \mid x)\)
Latent structure via marginalization

• Given a sentence-label pair \((x, y)\) and its \textbf{known} parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,

\[L(\hat{y}(z; x), y) \text{ or simply } L(z) \]

• But we don’t know \(z\)!

• In this section:
 we jointly learn a structured prediction model \(\pi_\theta(z | x)\) by optimizing the \textbf{expected loss},

\[\mathbb{E}_{\pi_\theta(z|x)} [L(z)] \]
But first, supervised SPINN
Stack-augmented Parser-Interpreter Neural Network

[Bowman et al., 2016]
Stack-augmented Parser-Interpreter Neural-Network

- Joint learning: Combines a constituency parser and a sentence representation model.
Stack-augmented Parser-Interpreter Neural-Network

- Joint learning: Combines a constituency parser and a sentence representation model.
- The parser, $f_\theta(x)$ is a transition-based shift-reduce parser. It looks at top two elements of stack and top element of the buffer.
Stack-augmented Parser-Interpreter Neural-Network

- Joint learning: Combines a constituency parser and a sentence representation model.
- The parser, $f_\theta(x)$ is a transition-based shift-reduce parser. It looks at top two elements of stack and top element of the buffer.
- TreeLSTM combines top two elements of the stack when the parser choses the reduce action.
Stack-augmented Parser-Interpreter Neural Network

[Bowman et al., 2016]

deep-spin.github.io/tutorial
Stack-augmented Parser-Interpreter Neural-Network

[Bowman et al., 2016]
Stack-augmented Parser-Interpreter Neural-Network

[Bowman et al., 2016]
Stack-augmented Parser-Interpreter Neural-Network

[Bowman et al., 2016]
Stack-augmented Parser-Interpreter Neural Network

[Bowman et al., 2016]
Stack-augmented Parser-Interpreter Neural Network

[Bowman et al., 2016]

deep-spin.github.io/tutorial
Shift-Reduce parsing

We can write a shift-reduce style parse as a sequence of Bernoulli random variables,

$$z = \{z_1, \ldots, z_{2L-1}\}$$

where, $z_j \in \{0, 1\} \ \forall j \in [1, 2L - 1]$
A sequence of Bernoulli trials but with conditional dependence,

\[p(z_1, z_2, \ldots, z_{2L-1}) = \prod_{j=1}^{2L-1} p(z_j | z_{<j}) \]
Latent structure learning with SPINN

But now, removes syntactic supervision from SPINN. We model the parse, z, as a latent variable with our parser as the score function, $f_{\theta}(x)$.

With shift-reduce parsing, we're making discrete decisions. REINFORCE as a "natural" solution.
Latent structure learning with SPINN

• But now, remove syntactic supervision from SPINN.

[Diagram showing the process of parsing with TreeLSTM and REINFORCE for natural solutions]
Latent structure learning with SPINN

- But now, remove syntactic supervision from SPINN.

- We model the parse, z, as a latent variable with our parser as the score function estimator, $f_\theta(x)$.
Latent structure learning with SPINN

- But now, remove syntactic supervision from SPINN.

- We model the parse, \(z \), as a latent variable with our parser as the score function estimator, \(f_\theta(x) \).

- With shift-reduce parsing, we’re making discrete decisions \(\Rightarrow \) REINFORCE as a “natural” solution.
Unsupervised SPINN
Unsupervised SPINN

No syntactic supervision.
Only reward is from the downstream task.
We only get this reward after parsing the full sentence.
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
- Training parser network parameters, θ with REINFORCE
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
- Training parser network parameters, θ with REINFORCE
- The state, h, is the top two elements of the stack and the top element of the buffer.
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
- Training parser network parameters, θ with REINFORCE
- The state, h, is the top two elements of the stack and the top element of the buffer.
- Learning a policy network $\pi(z \mid h; \theta)$
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
- Training parser network parameters, θ with REINFORCE
- The state, h, is the top two elements of the stack and the top element of the buffer.
- Learning a policy network $\pi(z | h; \theta)$
- Maximize the reward, where R is performance on the downstream task like sentence classification.
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
- Training parser network parameters, θ with REINFORCE
- The state, h, is the top two elements of the stack and the top element of the buffer.
- Learning a policy network $\pi(z_j | h; \theta)$
- Maximizing the reward, where R is performance on the downstream task like sentence classification.

NOTE: Only a single reward at the end of parsing.
Through the looking glass of REINFORCE

$$\nabla_{\theta} \mathbb{E}_{z \sim \pi_{\theta}(z|x)} [L(z)]$$
Through the looking glass of REINFORCE

$$\nabla_{\theta} \mathbb{E}_{z \sim \pi_{\theta}(z|x)} [L(z)] = \nabla_{\theta} \left[\sum_{z} L(z) \pi_{\theta}(z \mid x) \right]$$

(By definition of expectation. How to evaluate?)
Through the looking glass of REINFORCE

\[\nabla_{\theta} \mathbb{E}_{z \sim \pi_{\theta}(z|x)}[L(z)] = \nabla_{\theta} \left[\sum_{z} L(z) \pi_{\theta}(z | x) \right] \]

(By definition of expectation. How to evaluate?)

\[= \sum_{z} L(z) \nabla_{\theta} \pi_{\theta}(z | x) \]
Through the looking glass of REINFORCE

\[
\nabla_\theta \mathbb{E}_{z \sim \pi_\theta(z|x)}[L(z)] = \nabla_\theta \left[\sum_z L(z) \pi_\theta(z|x) \right]
\]

(By definition of expectation. How to evaluate?)

\[
= \sum_z L(z) \nabla_\theta \pi_\theta(z|x)
\]

\[
= \sum_z L(z) \pi_\theta(z|x) \nabla_\theta \log \pi_\theta(z|x)
\]

(By Leibniz integral rule for log)
Through the looking glass of REINFORCE

\[
\nabla_{\theta} \mathbb{E}_{z \sim \pi_{\theta}(z|x)}[L(z)] = \nabla_{\theta} \left[\sum_{z} L(z) \pi_{\theta}(z | x) \right]
\]

(By definition of expectation. How to evaluate?)

\[
= \sum_{z} L(z) \nabla_{\theta} \pi_{\theta}(z | x)
\]

\[
= \sum_{z} L(z) \pi_{\theta}(z | x) \nabla_{\theta} \log \pi_{\theta}(z | x)
\]

(By Leibniz integral rule for \log)

\[
= \mathbb{E}_{z \sim \pi_{\theta}(z|x)}[L(z) \nabla_{\theta} \log \pi_{\theta}(z | x)]
\]
Yogatama et al. [2017] uses REINFORCE to train SPINN!

However, this vanilla implementation isn't very effective at learning syntax. This model fails to solve a simple toy problem.
Yogatama et al. [2017] uses REINFORCE to train SPINN!
However, this vanilla implementation isn’t very effective at learning syntax.
SPINN with REINFORCE, aka RL-SPINN

Yogatama et al. [2017] uses REINFORCE to train SPINN! However, this vanilla implementation isn’t very effective at learning syntax. This model fails to solve a simple toy problem.
Toy problem: ListOps

\[[\text{max } 2 \ 9 \ [\text{min } 4 \ 7 \] \ 0 \]\]
Toy problem: ListOps

[Supply your notes]

Table: Performance of Different Models

<table>
<thead>
<tr>
<th>Model</th>
<th>μ(σ) max</th>
<th>Self F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>71.5 (1.5)</td>
<td>74.4 -</td>
</tr>
<tr>
<td>RL-SPINN</td>
<td>60.7 (2.6)</td>
<td>64.8 30.8</td>
</tr>
<tr>
<td>Random Trees</td>
<td>-</td>
<td>- 30.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>F1 wrt. Avg. Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>48D RL-SPINN</td>
<td>64.5 16.0 32.1 14.6</td>
</tr>
<tr>
<td>128D RL-SPINN</td>
<td>43.5 13.0 71.1 10.4</td>
</tr>
<tr>
<td>GT Trees</td>
<td>41.6 8.8 100.0 9.6</td>
</tr>
<tr>
<td>Random Trees</td>
<td>24.0 24.0 24.2 5.2</td>
</tr>
</tbody>
</table>

Source: Nangia and Bowman, 2018

But why?

[deep-spin.github.io/tutorial: Supply your notes]
Toy problem: ListOps

Accuracy Self Model $\mu(\sigma)$ $\mu(\sigma)$ $\mu(\sigma)$ max F1

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Self F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>71.5 (1.5)</td>
<td>74.4</td>
</tr>
<tr>
<td>RL-SPINN</td>
<td>60.7 (2.6)</td>
<td>64.8</td>
</tr>
<tr>
<td>Random Trees</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

F1 wrt. Avg. Model LB RB GT Depth

<table>
<thead>
<tr>
<th>Model</th>
<th>F1 wrt. Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>48.0</td>
</tr>
<tr>
<td>RL-SPINN</td>
<td>46.5</td>
</tr>
<tr>
<td>GT Trees</td>
<td>41.6</td>
</tr>
<tr>
<td>Random Trees</td>
<td>24.0</td>
</tr>
</tbody>
</table>

But why?

- 128D RL-SPINN
 - F1: 43.5
 - RB: 13.0
 - GT: 71.1
 - Avg. Depth: 10.4

- GT Trees
 - F1: 41.6
 - RB: 8.8
 - GT: 100.0
 - Avg. Depth: 9.6

- Random Trees
 - F1: 24.0
 - RB: 24.0
 - GT: 24.2
 - Avg. Depth: 5.2

[39]

[Nangia and Bowman, 2018]
RL-SPINN’s Troubles

This system faces at least two big problems,
RL-SPINN’s Troubles

This system faces at least two big problems,

1. High variance of gradients
2. Coadaptation
High variance

- We have a single reward at the end of parsing.
High variance

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space! **Catalan number** of binary trees.
High variance

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space! **Catalan number** of binary trees.

- 3 tokens ⇒ 5 trees
- 5 tokens ⇒ 42 trees
- 10 tokens ⇒ 16796 trees
High variance

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space! **Catalan number** of binary trees.
- And the policy is stochastic.
High variance

So, sometimes the policy lands in a “rewarding state”:

\[
[\text{sm} \ [\text{sm} \ [\text{sm} \ [\text{max} \ 5 \ 6] \ 2] \ 0] \ 5 \ 0 \ 8 \ 6]
\]

Figure: Truth: 7; Pred: 7
High variance

Sometimes it doesn’t:

```
```

Figure: Truth: 6; Pred: 5
High variance

Catalan number of parses means we need many many samples to lower variance!
High variance

Catalan number of parses means we need many many samples to lower variance!

Possible solutions,

1. Gradient normalization
2. Control variates, aka baselines
Control variates

- A simple control variate: moving average of recent rewards
Control variates

- A simple control variate: moving average of recent rewards
- Parameters are updated using the advantage which is the difference between the reward, R, and the baseline prediction.
Control variates

• A simple control variate: moving average of recent rewards
• Parameters are updated using the advantage which is the difference between the reward, R, and the baseline prediction.

So,

$$\nabla \mathbb{E}_{z \sim \pi(z)} = \mathbb{E}_{z \sim \pi(z)} [(L(z) - b(x)) \nabla \pi(z)]$$
Control variates

- A simple control variate: moving average of recent rewards
- Parameters are updated using the advantage which is the difference between the reward, R, and the baseline prediction.

So,

$$\nabla \mathbb{E}_{z \sim \pi(z)} = \mathbb{E}_{z \sim \pi(z)}[(L(z) - b(x)) \nabla \pi(z)]$$

Which we can do because,

$$\sum_z b(x) \nabla \pi(z) = b(x) \sum_z \nabla \pi(z) = b(x) \nabla 1 = 0$$
Issues with SPINN with REINFORCE

This system faces two big problems,

1. High variance of gradients
2. Coadaptation
Coadaptation problem

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.
Coadaptation problem

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Generally, ϕ will be learned more quickly than θ, making it harder to explore the parsing search space and optimize for θ.
Coadaptation problem

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Generally, ϕ will be learned more quickly than θ, making it harder to explore the parsing search space and optimize for θ.

Difference in variance of two gradient estimates.
Coadaptation problem

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Generally, ϕ will be learned more quickly than θ, making it hard to explore the parsing search space and optimize for θ.

Possible solution: Proximal Policy Optimization (Schulman et al., 2017)
Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

1. Input dependent control variate
2. Gradient normalization
3. Proximal Policy Optimization
Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

1. Input dependent control variate
2. Gradient normalization
3. Proximal Policy Optimization

They solve ListOps!
Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

1. Input dependent control variate
2. Gradient normalization
3. Proximal Policy Optimization

They solve ListOps!
However, does not learn English grammars.
Should I? Shouldn’t I?

- Unbiased!
Should I? Shouldn’t I?

- Unbiased!
- High variance 😞
Should I? Shouldn’t I?

- Unbiased!
- In a simple setting, with enough tricks, it can work! 😊
- High variance 😞
Should I? Shouldn’t I?

- Unbiased!
- In a simple setting, with enough tricks, it can work! 😊

- High variance 😞
- Has not yet been very effective at learning English syntax.
III. Gradient Surrogates
So far:

- Tackled **expected loss** in a **stochastic computation graph**

\[E_{πθ(z|x)}[L(z)] \]

In this section:

Consider the deterministic alternative:

pick "best" structure \(z^* \text{\(x \) = arg max \(z \in \mathcal{M} \) \(\pi_θ(z | x) \) } \)

\[L(z^*) \]

3A: try to optimize the deterministic loss directly

3B: use this strategy to reduce variance in the stochastic model.
So far:

- Tackled **expected loss** in a **stochastic computation graph**

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]

- Optimized with the **REINFORCE** estimator.

In this section:
- Consider the deterministic alternative:
 - Pick "best" structure \(z(x) = \arg \max \pi_{\theta}(z|x) \)
 - Incur loss \(L(z) \)

3A: Try to optimize the deterministic loss directly
3B: Use this strategy to reduce variance in the stochastic model.
So far:

- Tackled **expected loss** in a **stochastic computation graph**

\[
E_{\pi(\theta|x)}[L(z)]
\]

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.
So far:

- Tackled **expected loss** in a **stochastic computation graph**

 $\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)]$

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

- Consider the **deterministic alternative**:

 - try to optimize the deterministic loss directly
 - use this strategy to reduce variance in the stochastic model.
So far:

- Tackled **expected loss** in a **stochastic computation graph**
 \[
 \mathbb{E}_{\pi_{\theta}(z|x)}[L(z)]
 \]
- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

- Consider the **deterministic alternative**:
 pick “best” structure
 \[
 \hat{z}(x) := \arg \max_{z \in \mathcal{M}} \pi_{\theta}(z | x)
 \]
So far:

- Tackled **expected loss** in a **stochastic computation graph**
 \[\mathbb{E}_{\pi_\theta(z|x)}[L(z)] \]

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

- Consider the **deterministic alternative**:
 \[\hat{z}(x) := \arg\max_{z \in M} \pi_\theta(z \mid x) \]
 \[L(\hat{z}(x)) \]
 - pick "best" structure
 - incur loss

[deep-spin.github.io/tutorial]
So far:

- Tackled **expected loss** in a **stochastic computation graph**
 \[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]
- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

- Consider the **deterministic alternative**:
 - pick “best” structure \(\hat{z}(x) := \text{arg max}_{z \in M} \pi_{\theta}(z \mid x) \)
 - incur loss \(L(\hat{z}(x)) \)
- 3A: try to optimize the deterministic loss directly
So far:
- Tackled **expected loss** in a stochastic computation graph

\[\mathbb{E}_{\pi_\theta(z|x)}[L(z)] \]

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:
- Consider the **deterministic alternative**: pick "best" structure

\[\hat{z}(x) := \arg \max_{z \in \mathcal{M}} \pi_\theta(z \mid x) \]

incur loss \(L(\hat{z}(x)) \)

- 3A: try to optimize the deterministic loss directly
- 3B: use this strategy to reduce variance in the stochastic model.
Recap: The argmax problem

\[z = \text{arg max}(s) \]

\[\frac{\partial z}{\partial s} = 0 \]
$p_j = \exp(s_j)/Z$

$$\begin{align*}
s &= [z = 1, z = 2, \ldots, z = N] \\
p &= [\frac{\partial p}{\partial s} = \text{diag}(p) - pp^\top]
\end{align*}$$
Straight-Through Estimator

Forward: $z = \text{arg max}(s)$

Backward: pretend z was some continuous $\sim p$; $\frac{\partial \sim p}{\partial s} = / 0$

Simplest identity, $\sim p(s) = s$, $\frac{\partial \sim p}{\partial s} = I$

Others, e.g. $\sim p(s) = \text{softmax}(s)$, $\frac{\partial \sim p}{\partial s} = \text{diag}(\sim p) - \sim p \sim p^\top$

More explanation in a while

[Hinton, 2012, Bengio et al., 2013]
• **Forward:** $z = \text{arg max}(s)$

[Note on diagram: s and z]

[Hinton, 2012, Bengio et al., 2013]
Straight-Through Estimator

- **Forward**: $z = \text{arg max}(s)$
Straight-Through Estimator

- **Forward**: $z = \arg \max(s)$
- **Backward**: pretend z was some continuous \tilde{p}; $\frac{\partial \tilde{p}}{\partial s} \neq 0$
Straight-Through Estimator

- **Forward**: \(z = \text{arg max}(s) \)
- **Backward**: pretend \(z \) was some continuous \(\tilde{p} \); \(\frac{\partial \tilde{p}}{\partial s} \neq 0 \)
Straight-Through Estimator

- **Forward**: \(z = \text{arg max}(s) \)
- **Backward**: pretend \(z \) was some continuous \(\tilde{p} \); \(\frac{\partial \tilde{p}}{\partial s} \neq 0 \)
 - simplest: identity, \(\tilde{p}(s) = s, \frac{\partial \tilde{p}}{\partial s} = I \)

[Hinton, 2012, Bengio et al., 2013]
Straight-Through Estimator

- **Forward**: \(z = \arg \max(s) \)
- **Backward**: pretend \(z \) was some continuous \(\tilde{p} \); \(\frac{\partial \tilde{p}}{\partial s} \neq 0 \)
 - simplest: identity, \(\tilde{p}(s) = s, \frac{\partial \tilde{p}}{\partial s} = I \)
 - others, e.g. softmax \(\tilde{p}(s) = \text{softmax}(s), \frac{\partial \tilde{p}}{\partial s} = \text{diag}(\tilde{p}) - \tilde{p}\tilde{p}^T \)
Straight-Through Estimator

- **Forward**: \(z = \arg \max(s) \)
- **Backward**: pretend \(z \) was some continuous \(\tilde{p} \); \(\frac{\partial \tilde{p}}{\partial s} \neq 0 \)
 - simplest: identity, \(\tilde{p}(s) = s \), \(\frac{\partial \tilde{p}}{\partial s} = I \)
 - others, e.g. softmax \(\tilde{p}(s) = \text{softmax}(s) \), \(\frac{\partial \tilde{p}}{\partial s} = \text{diag}(\tilde{p}) - \tilde{p}\tilde{p}^T \)
- More explanation in a while
Straight-Through Estimator

- **Forward:** \(z = \text{arg max}(s) \)
- **Backward:** pretend \(z \) was some continuous \(\tilde{p} \); \(\frac{\partial \tilde{p}}{\partial s} \neq 0 \)
 - simplest: identity, \(\tilde{p}(s) = s \), \(\frac{\partial \tilde{p}}{\partial s} = I \)
 - others, e.g. softmax \(\tilde{p}(s) = \text{softmax}(s) \), \(\frac{\partial \tilde{p}}{\partial s} = \text{diag}(\tilde{p}) - \tilde{p}\tilde{p}^T \)
- More explanation...What about the structured case?
Dealing with the combinatorial explosion

1. Incremental structures
 - Build structure **greedily**, as sequence of discrete choices (e.g., shift-reduce).
 - Scores (partial structure, action) tuples.
 - **Advantages**: flexible, rich histories.
 - **Disadvantages**: greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts
 - Optimizes **globally** (e.g. Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
 - Scores smaller parts.
 - **Advantages**: optimal, elegant, can handle hard & global constraints.
 - **Disadvantages**: strong assumptions.
STE for incremental structures

Build a structure as a sequence of discrete choices (e.g., shift-reduce).

Assign a score to any (parallel structure, action) tuple. In this case, we just apply the straight-through in or forward step.

Forward: the highest scoring action for each step.

Backward: pretend that we had used a differentiable surrogate function.

STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
STE for incremental structures

• Build a structure as a sequence of discrete choices (e.g., shift-reduce)
• Assigns a score to any (partial structure, action) tuple.
• In this case, we just apply the straight-through estimator for each step.
STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- **Forward**: the **highest scoring action** for each step
STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- **Forward**: the highest scoring action for each step
- **Backward**: pretend that we had used a differentiable surrogate function
STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- **Forward**: the highest scoring action for each step
- **Backward**: pretend that we had used a differentiable surrogate function

STE for the factorized approach

Requires a bit more work:

- Recap: marginal polytope
- Predicting structures globally: Maximum A Posteriori (MAP)
- Deriving Straight-Through and SPIGOT
The structured case: Marginal polytope

Each vertex corresponds to one such bit vector z. Points inside correspond to marginal distributions:

$$\mu = p_1 z_1 + \ldots + p_N z_N \quad |\{z\}$$

Exponentially many terms.

- $p_1 = 0.2$, $z_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$.
- $p_2 = 0.7$, $z_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0]$.
- $p_3 = 0.1$, $z_3 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$.

$\mu = [0.3, 0, 0.7, 0, 0.3, 0.7, 0.7, 0.1, 0.2]$.

[Wainwright and Jordan, 2008]
The structured case: Marginal polytope

- Each vertex corresponds to one such *bit vector* z

[Wainwright and Jordan, 2008]
The structured case: Marginal polytope

- Each vertex corresponds to one such *bit vector* \mathbf{z}
- Points inside correspond to *marginal distributions*: convex combinations of structured objects

$$
\mu = p_1 \mathbf{z}_1 + \ldots + p_N \mathbf{z}_N, \quad p \in \Delta.
$$

exponentially many terms

$p_1 = 0.2, \quad \mathbf{z}_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$

$p_2 = 0.7, \quad \mathbf{z}_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0]$ \Rightarrow \mu = [0.3, 0.7, 0.3, 0.7, 0.7, 1, 0.2]$
Predicting structures from scores of parts

- $\eta(i \rightarrow j)$: score of arc $i \rightarrow j$
- $z(i \rightarrow j)$: is arc $i \rightarrow j$ selected?
Predicting structures from scores of parts

- $\eta(i \rightarrow j)$: score of arc $i \rightarrow j$
- $z(i \rightarrow j)$: is arc $i \rightarrow j$ selected?
- Task-specific algorithm for the highest-scoring structure.
Algorithms for specific structures

Best structure (MAP)

Sequence tagging
- Viterbi
 [Rabiner, 1989]
- CKY
 [Kasami, 1966, Younger, 1967]
 [Cocke and Schwartz, 1970]

Constituent trees
- DTW
 [Sakoe and Chiba, 1978]

Temporal alignments
- Max. Spanning Arborescence
 [Chu and Liu, 1965, Edmonds, 1967]

Dependency trees
- Kuhn-Munkres
 [Kuhn, 1955, Jonker and Volgenant, 1987]

Assignments
Structured Straight-Through

- **Forward pass:**
 Find highest-scoring structure:
 \[z = \arg \max_{z \in \mathcal{Z}} \eta^T z \]

- **Backward pass:**
 pretend we used \(\tilde{\mu} = \eta \).
Straight-Through Estimator
Revisited

[105x225]Straight-Through Estimator
Revisited

In the forward pass, $z = \arg \max(s)$. If we had labels (multi-task learning), $L_{MTL} = L^y(z) + L_{hid}(s, z_{true})$.

One choice: perceptron loss
$L_{hid}(s, z_{true}) = s^T z - s^T z_{true}$; $\frac{\partial L_{hid}}{\partial s} = z - z_{true}$.

We don't have labels! Induce labels by "pulling back" the downstream target: the "best" (unconstrained) latent value would be: $\arg \min_{\sim z} \mathbb{E}_{D} L^y(\sim z)$.

One gradient descent step starting from z: $z_{true} \rightarrow z_{true} - \frac{\partial L}{\partial z} \frac{\partial L_{MTL}}{\partial s} \approx 0 + \frac{\partial L_{hid}}{\partial s} \approx z - z_{true}$.

[Martins and Niculae, 2019]
Straight-Through Estimator
Revisited

- In the forward pass, $z = \arg \max(s)$.
Straight-Through Estimator
Revisited

- In the forward pass, $z = \text{arg max}(s)$.
- if we had labels (multi-task learning), $L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}})$
Straight-Through Estimator
Revisited

- In the forward pass, \(z = \arg \max(s) \).
- If we had labels (multi-task learning), \(L_{MTL} = L(\hat{y}(z), y) + L_{hid}(s, z^{true}) \).
- One choice: perceptron loss \(L_{hid}(s, z^{true}) = s^Tz - s^Tz^{true} \), \(\frac{\partial L_{hid}}{\partial s} = z - z^{true} \).
Straight-Through Estimator
Revisited

- In the forward pass, $z = \arg\max(s)$.
- if we had labels (multi-task learning), $L_{MTL} = L(\hat{y}(z), y) + L_{hid}(s, z^{true})$
- One choice: perceptron loss $L_{hid}(s, z^{true}) = s^T z - s^T z^{true}$, $\frac{\partial L_{hid}}{\partial s} = z - z^{true}$.
- We don’t have labels! Induce labels by “pulling back” the downstream target: the “best” (unconstrained) latent value would be: $\arg\min_{\tilde{z} \in \mathbb{R}^D} L(\hat{y}(\tilde{z}), y)$
Straight-Through Estimator
Revisited

- In the forward pass, $z = \arg \max(s)$.
- If we had labels (multi-task learning), $L_{MTL} = L(\hat{y}(z), y) + L_{hid}(s, z^{true})$.
- One choice: perceptron loss $L_{hid}(s, z^{true}) = s^T z - s^T z^{true}$, $\frac{\partial L_{hid}}{\partial s} = z - z^{true}$.
- We don’t have labels! Induce labels by “pulling back” the downstream target: the “best” (unconstrained) latent value would be: $\arg \min_{\tilde{z} \in \mathbb{R}^D} L(\hat{y}(\tilde{z}), y)$
- One gradient descent step starting from z: $z^{true} \leftarrow z - \frac{\partial L}{\partial z}$
Straight-Through Estimator
Revisited

- In the forward pass, $z = \arg \max(s)$.
- If we had labels (multi-task learning), $L_{MTL} = L(\hat{y}(z), y) + L_{hid}(s, z^{true})$
- One choice: perceptron loss $L_{hid}(s, z^{true}) = s^T z - s^T z^{true}$, $\frac{\partial L_{hid}}{\partial s} = z - z^{true}$.
- We don’t have labels! Induce labels by “pulling back” the downstream target: the “best” (unconstrained) latent value would be: $\arg\min_{\tilde{z} \in \mathbb{R}^D} L(\hat{y}(\tilde{z}), y)$
- One gradient descent step starting from z: $z^{true} \leftarrow z - \frac{\partial L}{\partial z}$

\[
\frac{\partial L_{MTL}}{\partial s} = \underbrace{\frac{\partial L}{\partial s}}_{=0} + \frac{\partial L_{hid}}{\partial s}
\]
Straight-Through Estimator
Revisited

- In the forward pass, $z = \arg \max(s)$.
- if we had labels (multi-task learning), $L_{MTL} = L(\hat{y}(z), y) + L_{hid}(s, z^{true})$
- One choice: perceptron loss $L_{hid}(s, z^{true}) = s^T z - s^T z^{true}$, $\frac{\partial L_{hid}}{\partial s} = z - z^{true}$.
- We don’t have labels! Induce labels by “pulling back” the downstream target: the “best” (unconstrained) latent value would be: $\arg \min_{\tilde{z} \in \mathbb{R}^D} L(\hat{y}(\tilde{z}), y)$
- One gradient descent step starting from z: $z^{true} \leftarrow z - \frac{\partial L}{\partial z}$

$$\frac{\partial L_{MTL}}{\partial s} = \frac{\partial L}{\partial s} + \underbrace{\frac{\partial L_{hid}}{\partial s}}_{=0} = z - \left(z - \frac{\partial L}{\partial z}\right) = \frac{\partial L}{\partial z}$$
Straight-Through in the structured case

- Structured STE: perceptron update with induced annotation

\[
\arg\min_{\mu \in \mathbb{R}^D} L(\hat{y}(\mu), y) \approx z - \nabla_z L(z) \rightarrow z^{\text{true}}
\]

(one step of gradient descent)
Structured STE: perceptron update with induced annotation

\[
\begin{align*}
\arg \min_{\mu \in \mathbb{R}^D} L(\hat{y}(\mu), y) & \approx z - \nabla_z L(z) \rightarrow z^{\text{true}} \\
\text{(one step of gradient descent)}
\end{align*}
\]

SPIGOT takes into account the constraints; uses the induced annotation

\[
\begin{align*}
\arg \min_{\mu \in \mathcal{M}} L(\hat{y}(\mu), y) & \approx \text{Proj}_\mathcal{M}(z - \nabla_z L(z)) \rightarrow z^{\text{true}} \\
\text{(one step of projected gradient descent!)}
\end{align*}
\]
Straight-Through in the structured case

- Structured STE: perceptron update with induced annotation
 \[
 \arg \min_{\mu \in \mathbb{R}^D} L(\hat{y}(\mu), y) \approx z - \nabla z L(z) \rightarrow z^{\text{true}}
 \]
 (one step of gradient descent)

- SPIGOT takes into account the constraints; uses the induced annotation
 \[
 \arg \min_{\mu \in \mathcal{M}} L(\hat{y}(\mu), y) \approx \text{Proj}_{\mathcal{M}} (z - \nabla z L(z)) \rightarrow z^{\text{true}}
 \]
 (one step of projected gradient descent!)

- We discuss a generic way to compute the projection in part 4.
Summary: Straight-Through Estimator

We saw how to use the Straight-Through Estimator to allow learning models with argmax in the middle of the computation graph. We were optimizing $L^z(x)$. Now we will see how to apply STE for stochastic graphs, as an alternative approach of REINFORCE.
Summary: Straight-Through Estimator

We saw how to use the *Straight-Through Estimator* to allow learning models with \textit{argmax} in the middle of the computation graph.
Summary: Straight-Through Estimator

We saw how to use the Straight-Through Estimator to allow learning models with argmax in the middle of the computation graph.
We were optimizing $L(\hat{z}(x))$
Summary: Straight-Through Estimator

We saw how to use the *Straight-Through Estimator* to allow learning models with *argmax* in the middle of the computation graph.

We were optimizing \(L(\hat{z}(x)) \)

Now we will see how to apply STE for stochastic graphs, as an alternative approach of REINFORCE.
Stochastic node in the computation graph

Recall the stochastic objective:

$$E_{\pi}^{\theta}(z)$$

$$L(z)$$

REINFORCE (previous section).

High variance.

An alternative using the reparameterization trick \[\text{[Kingma and Welling, 2014].} \]
Recall the stochastic objective:

$$\mathbb{E}_{\pi_\theta(z|x)}[L(z)]$$
Stochastic node in the computation graph

Recall the stochastic objective:

\[E_{\pi_\theta(z|x)}[L(z)] \]

- REINFORCE (previous section).
Recall the stochastic objective:

$$E_{\pi_{\theta}(z|x)}[L(z)]$$

- REINFORCE (previous section). High variance. 😞
Stochastic node in the computation graph

Recall the stochastic objective:

$$E_{\pi_\theta(z|x)}[L(z)]$$

- REINFORCE (previous section). High variance. 😞
- An alternative is using the *reparameterization trick* [Kingma and Welling, 2014].
Categorical reparameterization

Sampling from a categorical value in the middle of the computation.

\[\pi(\theta(x)) \propto \exp(\theta(x)) \]

What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?

Reparameterization: Move the stochasticity out of the gradient path.

Makes \(z \) deterministic w.r.t. \(s \).
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.

\[z \sim \pi_{\theta}(z \mid x) \propto \exp s_{\theta}(z \mid x) \]

What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?!
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_\theta(z \mid x) \propto \exp s_\theta(z \mid x) \]
- What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \) ?!
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_\theta(z \mid x) \propto \exp s_\theta(z \mid x) \]
- What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?!
- Reparameterization: Move the stochasticity out of the gradient path.

[Jang et al., 2017, Maddison et al., 2016]
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_\theta(z \mid x) \propto \exp s_\theta(z \mid x) \]
- What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?!
- Reparameterization: Move the stochasticity out of the gradient path.
- Makes \(z \) deterministic w.r.t. \(s \)!
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_{\theta}(z \mid x) \propto \exp s_{\theta}(z \mid x) \]
- What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?!
- Reparameterization: Move the stochasticity out of the gradient path.
- Makes \(z \) deterministic w.r.t. \(s \)!

[Jang et al., 2017, Maddison et al., 2016]
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_\theta(z \mid x) \propto \exp s_\theta(z \mid x) \]
- What is the gradient of \(z \) with respect to \(\theta \)?
- Reparameterization: Moving stochasticity out of the gradient path.
 Makes \(z \) deterministic with respect to \(s \).
 We can backpropagate through the deterministic input to \(z \).

As a result:
Stochasticity is moved as an input.
How do we sample from a categorical variable? [Jang et al., 2017, Maddison et al., 2016]

Categorical reparameterization

\[s + \epsilon + z \]

\(\epsilon \) (stochastic)
Categorical reparameterization

How do we sample from a categorical variable?

\[\mathcal{N}(s + \epsilon, \sigma), \mathcal{N}(\epsilon) \]

[Jang et al., 2017, Maddison et al., 2016]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 $$p = \text{softmax}(s)$$
 $$c_i = \sum_j p_j$$
 Uniform($0, 1$)
 return z s.t. $c_t < c_{t+1}$

2. The Gumbel-Max trick
 $$\epsilon_i = -\log(-\log(u_i))$$
 $$z = \text{arg max}(s + \epsilon)$$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0,1)$. Derivation & more info: [Adams, 2013, Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:

$$p_i = \text{softmax}(s_i)$$

$$c_i = \sum_j s_j p_j$$

$$u \sim \text{Uniform}(0, 1)$$

$$z = \text{arg max} (s_i + \varepsilon_i)$$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0, 1)$.

References & more info:
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$

2. The Gumbel-Max trick
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \arg\max(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requires sampling from the Standard Gumbel Distribution $G(0,1)$.

Derivation & more info: [Adams, 2013], [Vieira, 2014]

We have an argmax again and cannot backpropagate!
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j\leq i} p_j$

2. The Gumbel-Max trick
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\varepsilon_i = -\log(-\log(u_i))$
 - $z = \arg\max (s + \varepsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0, 1)$. Derivation & more info: [Adams, 2013, Vieira, 2014]

We have an argmax again and cannot backpropagate!
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. **Inverse transform sampling:**
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0,1)$. Derivation & more info: [Adams, 2013, Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. **Inverse transform sampling:**
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \arg\max(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

RequiressamplingfromtheStandardGumbelDistribution $\mathcal{G}(0,1)$.

Derivation & more info:
- [Adams, 2013]
- [Vieira, 2014]

We have an argmax again and cannot backpropagate!
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick
 - $u_i \sim \text{Uniform}(0, 1)$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0, 1)$.

Derivation & more info: [Adams, 2013], [Vieira, 2014]

We have an argmax again and cannot backpropagate!
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t \text{ s.t. } c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0, 1)$.

Derivation & more info: [Adams, 2013], [Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores \(s \) (class \(i \) has a score \(s_i \))

1. Inverse transform sampling:
 - \(p = \text{softmax}(s) \)
 - \(c_i = \sum_{j \leq i} p_j \)
 - \(u \sim \text{Uniform}(0, 1) \)
 - return \(z = e_t \) s.t. \(c_t \leq u < c_{t+1} \)

2. The Gumbel-Max trick
 - \(u_i \sim \text{Uniform}(0, 1) \)
 - \(\epsilon_i = -\log(-\log(u_i)) \)
 - \(z = \arg \max(s + \epsilon) \)

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requieres sampling from the Standard Gumbel Distribution \(G(0, 1) \).

Derivation & more info:
- [Adams, 2013]
- [Vieira, 2014]

We have an arg max again and cannot backpropagate!
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \text{arg max}(s + \epsilon)$

The two methods are equivalent. *(Not obvious, but we will not prove it now.)*
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t \text{ s.t. } c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \text{arg max}(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requires sampling from the Standard Gumbel Distribution $G(0,1)$.

Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \arg \max (s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)
Requires sampling from the Standard Gumbel Distribution $G(0,1)$.

Derivation & more info: [Adams, 2013, Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t < z < c_{t+1}$

2. The Gumbel-Max trick
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \text{arg max}(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requirers sampling from the Standard Gumbel Distribution $G(0, 1)$.

Derivation & more info: [Adams, 2013, Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ such that $c_t < u < c_{t+1}$

2. The Gumbel-Max trick
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \arg\max(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requisites sampling from the Standard Gumbel Distribution $G(0, 1)$.

Derivation & more info:
- [Adams, 2013]
- [Vieira, 2014]

We have an argmax again and cannot backpropagate!
Straight-Through Gumbel Estimator

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

\[z = \text{arg max}(s + \epsilon) \]

\[\text{Forward: pretend we had} \quad p = \text{softmax}(s + \epsilon) \]

What about the structured case?
Straight-Through Gumbel Estimator

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

- **Forward:** \(z = \text{arg max}(s + \epsilon) \)

"Forward: pretend we had" \(p = \text{softmax}(s + \epsilon) \)

\(\epsilon = -\log(-\log(u_i)) \)

\(u_i \sim U(0,1) \)

[Jang et al., 2017, Maddison et al., 2016]
Straight-Through Gumbel Estimator

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

- **Forward:** \(z = \text{arg max}(s + \epsilon) \)
- **Backward:** pretend we had done
 \(\tilde{p} = \text{softmax}(s + \epsilon) \)

\[
\epsilon = -\log(-\log(u_i))
\]

\[
u_i \sim \text{U}(0,1)
\]
Straight-Through Gumbel Estimator

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

- **Forward:** $z = \text{arg max}(s + \epsilon)$
- **Backward:** pretend we had done
 $\tilde{p} = \text{softmax}(s + \epsilon)$

What about the structured case?

$\epsilon = -\log(-\log(u))$
$u \sim U(0,1)$

[Hinton et al., 2015, Maddison et al., 2016]
Dealing with the combinatorial explosion

1. Incremental structures
 - Build structure **greedily**, as sequence of discrete choices (e.g., shift-reduce).
 - Scores (partial structure, action) tuples.
 - **Advantages:** flexible, rich histories.
 - **Disadvantages:** greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts
 - Optimizes **globally** (e.g. Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
 - Scores smaller parts.
 - **Advantages:** optimal, elegant, can handle hard & global constraints.
 - **Disadvantages:** strong assumptions.
Sampling from incremental structures

Build a structure as a sequence of discrete choices (e.g., shift-reduce).

Assign a score to any (parallel structure, action) tuple.

Reparameterize the scores with Gumbel-Max; now we have a deterministic node.

Forward: the argmax from the reparameterized scores for each step.

Backward: pretend we had used a differentiable surrogate function.

Example: GumbelTree-LSTM [Cho et al., 2018].

depth-spin.github.io/tutorial
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
Sampling from incremental structures

• Build a structure as a sequence of discrete choices (e.g., shift-reduce)
• Assigns a score to any (partial structure, action) tuple.
• Reparameterize the scores with Gumbel-Max - now we have a deterministic node.
Sampling from incremental structures

• Build a structure as a sequence of discrete choices (e.g., shift-reduce)
• Assigns a score to any (partial structure, action) tuple.
• Reparameterize the scores with Gumbel-Max - now we have a deterministic node.
• **Forward:** the argmax from the reparameterized scores for each step
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max - now we have a deterministic node.
- **Forward**: the argmax from the reparameterized scores for each step
- **Backward**: pretend we had used a **differentiable surrogate function**
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max - now we have a deterministic node.
- **Forward**: the argmax from the reparameterized scores for each step
- **Backward**: pretend we had used a **differentiable surrogate function**

Example: Gumbel Tree-LSTM [Choi et al., 2018].
Example: Gumbel Tree-LSTM

- Building task-specific tree structures.
- Straight-Through Gumbel-Softmax at each step to select one arc.
Sampling from factorized models

Perturb-and-MAP

Reparameterize by **perturbing the arc scores.** (inexact!)
Sampling from factorized models

Perturb-and-MAP

Reparameterize by **perturbing the arc scores.** (inexact!)

- Sample from the normal Gumbel distribution.
- $\epsilon \sim G(0, 1)$
Sampling from factorized models

Perturb-and-MAP

Reparameterize by **perturbing the arc scores.** (inexact!)

- Sample from the normal Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.

\[\epsilon \sim G(0, 1) \]
\[\tilde{\eta} = \eta + \epsilon \]
Sampling from factorized models
Perturb-and-MAP

Reparameterize by **perturbing the arc scores**. (inexact!)

- Sample from the normal Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.
- Compute MAP (task-specific algorithm).

\[\epsilon \sim G(0, 1) \]
\[\tilde{\eta} = \eta + \epsilon \]
\[\arg \max_{z \in Z} \tilde{\eta}^T z \]
Sampling from factorized models
Perturb-and-MAP

Reparameterize by perturbing the arc scores. (inexact!)

- Sample from the normal Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.
- Compute MAP (task-specific algorithm).
- Backward: we could use Straight-Through with Identity.

\[\epsilon \sim G(0, 1) \]
\[\tilde{\eta} = \eta + \epsilon \]
\[\arg \max_{z \in \mathcal{Z}} \tilde{\eta}^T z \]
Summary: Gradient surrogates

- Based on the **Straight-Through Estimator**.
- Can be used for stochastic or deterministic computation graphs.
- **Forward pass**: Get an argmax (might be structured).
- **Backpropagation**: use a function, which we hope is close to argmax.
- **Examples**:
 - Argmax for iterative structures and factorization into parts
 - Sampling from iterative structures and factorization into parts
Gradient surrogates: Pros and cons

Pros

• Do not suffer from the high variance problem of REINFORCE.
• Allow for flexibility to select or sample a latent structured in the middle of the computation graph.
• Efficient computation.

Cons

• The Gumbel sampling with Perturb-and-MAP is an approximation.
• Bias, due to function mismatch on the backpropagation (next section will address this problem.)
Overview

\[\mathbb{E}_{\pi_\theta(z|x)}[L(z)] \quad L(\arg \max_z \pi_\theta(z \mid x)) \]

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- Straight-Through
- SPIGOT

And more...
Overview

\[\mathbb{E}_{\pi_\theta(z|x)}[L(z)] \quad L(\arg\max_z \pi_\theta(z \mid x)) \quad L(\mathbb{E}_{\pi_\theta(z|x)}[z]) \]

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- Straight-Through
- SPIGOT
- Structured Attn. Nets
- SparseMAP

And more, after the break!
IV. End-to-end Differentiable Relaxations
End-to-end differentiable relaxations

1. Digging into softmax
2. Alternatives to softmax
3. Generalizing to structured prediction
4. Stochasticity and global structures
Recall: Discrete choices & differentiability

\[s = f_\theta(x) \]

\[s = f_\theta(x) \]

\[\frac{\partial z}{\partial s} = 0 \text{ or n/a} \]

\[(\text{argmax}) \]

\[y = g_\phi(z, x) \]
One solution: smooth relaxation

\[s = f_\theta(x) \]

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]

\[p = \text{softmax}(s) = \mathbb{E}[z], \text{i.e.} \]
replace \(\mathbb{E}[f(z)] \) with \(f(\mathbb{E}[z]) \)

\[\frac{\partial p}{\partial s} = \partial \]

(softmax)

\[y = g_\phi(z, x) \]
One solution: smooth relaxation

\[s = f_\theta(x) \]

\[p = \text{softmax}(s) = \mathbb{E}[z], \text{ i.e. replace } \mathbb{E}[f(z)] \text{ with } f(\mathbb{E}[z]) \]

\[\frac{\partial p}{\partial s} = \rightleftharpoons \]

(softmax)

\[y = g_\phi(z, x) \]
Overview

$$\mathbb{E}_{\pi_\theta(z|x)}[L(z)] \quad L(\arg\max_z \pi_\theta(z \mid x)) \quad L(\mathbb{E}_{\pi_\theta(z|x)}[z])$$

- REINFORCE
- Straight-Through
- Straight-Through Gumbel (Perturb & MAP)
- SPIGOT
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\[p_{\top} \text{ argmax } \] maximizes expected score

Shannon entropy of \(p \):

\[H(p) = -\sum_i p_i \log p_i \]

so \(\text{maximizes} \) expected score + entropy:

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5
What is softmax?

Often defined via $p_i = \frac{\exp s_i}{\sum_j \exp s_j}$, but where does it come from?

$p \in \Delta$: probability distribution over choices

Maximizes expected score

Shannon entropy of p:

$H(p) = -\sum_i p_i \log p_i$
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\(p \in \Delta \): probability distribution over choices
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\(p \in \Delta \): probability distribution over choices
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\(p \in \Delta \): probability distribution over choices
What is softmax?

Often defined via $p_i = \frac{\exp s_i}{\sum_j \exp s_j}$, but where does it come from?

$p \in \Delta$: probability distribution over choices

Expected score under p: $\mathbb{E}_{i \sim p} s_i = p^\top s$

$\exp s_i$
What is softmax?

Often defined via

\[
p_i = \frac{\exp s_i}{\sum_j \exp s_j},
\]

but where does it come from?

\(p \in \Delta: \text{probability distribution over choices}\)

Expected score under \(p\):
\[
\mathbb{E}_{i \sim p} s_i = p^\top s
\]

argmax
What is softmax?

Often defined via

\[p_i = \frac{\exp s_i}{\sum_j \exp s_j}, \]

but where does it come from?

\[p \in \Delta: \text{probability distribution over choices} \]

Expected score under \(p \):

\[\mathbb{E}_{i \sim p} s_i = p^\top s \]

\textbf{argmax} maximizes \textit{expected score}
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\(p \in \Delta \): probability distribution over choices

Expected score under \(p \): \(\mathbb{E}_{i \sim p} s_i = p^T s \)

\textbf{argmax} maximizes expected score

Shannon entropy of \(p \): \(H(p) = -\sum_i p_i \log p_i \)
What is softmax?

Often defined via
\[p_i = \frac{\exp s_i}{\sum_j \exp s_j}, \]
but where does it come from?

\(p \in \Delta \): probability distribution over choices

Expected score under \(p \): \(\mathbb{E}_{i \sim p} s_i = p^\top s \)

\texttt{argmax} maximizes \textbf{expected score}

Shannon entropy of \(p \): \(H(p) = -\sum_i p_i \log p_i \)

\textbf{softmax} maximizes \textbf{expected score} + \textbf{entropy}:

\[
\arg \max_{p \in \Delta} p^\top s + H(p)
\]
Variational form of softmax

Proposition. The unique solution to \(\operatorname{arg\,max}_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(p \geq 0, \ p^T 1 = 1 \)
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s} + H(\mathbf{p}) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

- maximize \(\sum_j p_j s_j - p_j \log p_j \)
- subject to \(\mathbf{p} \geq 0, \mathbf{p}^\top \mathbf{1} = 1 \)

Lagrangian:

\[
\mathcal{L}(\mathbf{p}, \boldsymbol{\nu}, \tau) = -\sum_j p_j s_j - p_j \log p_j - \mathbf{p}^\top \boldsymbol{\nu} + \tau(\mathbf{p}^\top \mathbf{1} - 1)
\]
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(p \geq 0, \; p^T 1 = 1 \)

Lagrangian:

\[
\mathcal{L}(p, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - p^T \nu + \tau (p^T 1 - 1)
\]

Optimality conditions (KKT):

\[
0 = \nabla_{p_i} \mathcal{L}(p, \nu, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau
\]

\[
p^T \nu = 0
\]

\[
p \in \Delta
\]

\[
\nu \geq 0
\]

[Boyd and Vandenberghe, 2004; Wainwright and Jordan, 2008]
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s} + H(\mathbf{p}) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

\[
\begin{aligned}
\text{maximize} & \quad \sum_j p_j s_j - p_j \log p_j \\
\text{subject to} & \quad \mathbf{p} \geq 0, \quad \mathbf{p}^\top \mathbf{1} = 1
\end{aligned}
\]

Lagrangian:

\[
\mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -\sum_j p_j s_j - p_j \log p_j - \mathbf{p}^\top \mathbf{\nu} + \tau(\mathbf{p}^\top \mathbf{1} - 1)
\]

Optimality conditions (KKT):

\[
\begin{aligned}
0 &= \nabla_{p_i} \mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau \\
\mathbf{p}^\top \mathbf{\nu} &= 0 \\
\mathbf{p} &\in \Delta \\
\mathbf{\nu} &\geq 0
\end{aligned}
\]
Variational form of softmax

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^T s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_i}$.

Explicit form of the optimization problem:

maximize $\sum_j p_j s_j - p_j \log p_j$

subject to $p \geq 0$, $p^T 1 = 1$

Lagrangian:

$L(p, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - p^T \nu + \tau(p^T 1 - 1)$

Optimality conditions (KKT):

$0 = \nabla_{p_i} L(p, \nu, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau$

$p^T \nu = 0$

$p \in \Delta$

$\nu \geq 0$

log $p_i = s_i + \nu_i - (\tau + 1)$

if $p_i = 0$, r.h.s. must be $-\infty$, thus $p_i > 0$, so $\nu_i = 0$.

$\log p_i = s_i + \nu_i - (\tau + 1)$

if $p_i = 0$, r.h.s. must be $-\infty$, thus $p_i > 0$, so $\nu_i = 0$.

$p_i = \frac{\exp(s_i)}{Z}$

Must find Z such that $\sum_j p_j = 1$.

So, $p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)}$.

Classic result, e.g., [Boyd and Vandenberghe, 2004, Wainwright and Jordan, 2008].
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^T \mathbf{s} + H(\mathbf{p}) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(\mathbf{p} \geq 0, \mathbf{p}^T \mathbf{1} = 1 \)

Lagrangian:

\[
\mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = - \sum_j p_j s_j - p_j \log p_j - \mathbf{p}^T \mathbf{\nu} + \tau (\mathbf{p}^T \mathbf{1} - 1)
\]

Optimality conditions (KKT):

\[
0 = \nabla_{p_i} \mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau
\]

\[
\mathbf{p}^T \mathbf{\nu} = 0
\]

\[
\mathbf{p} \in \Delta
\]

\[
\mathbf{\nu} \geq 0
\]

\[
\log p_i = s_i + \nu_i - (\tau + 1)
\]

if \(p_i = 0 \), r.h.s. must be \(-\infty\),

thus \(p_i > 0 \), so \(\nu_i = 0 \).

\[
p_i = \frac{\exp(s_i)}{\exp(\tau+1)} = \frac{\exp(s_i)}{Z}
\]

Must Cnd \(Z \) such that \(\sum_j p_j = 1 \).

Answer:

\[
Z = \sum_j \exp(s_j)
\]

So,

\[
p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)}.
\]

Classic result, e.g., [Boyd and Vandenberghe, 2004], [Wainwright and Jordan, 2008]
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^T \mathbf{s} + H(\mathbf{p}) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(p \geq 0, \ p^T \mathbf{1} = 1 \)

Lagrangian:

\(\mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -\sum_j p_j s_j - p_j \log p_j - \mathbf{p}^T \mathbf{\nu} + \tau (\mathbf{p}^T \mathbf{1} - 1) \)

Optimality conditions (KKT):

\(0 = \nabla_{p_i} \mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau \)

\(\mathbf{p}^T \mathbf{\nu} = 0 \)

\(\mathbf{p} \in \Delta \)

\(\mathbf{\nu} \geq 0 \)

\(\log p_i = s_i + \nu_i - (\tau + 1) \)

if \(p_i = 0 \), r.h.s. must be \(-\infty\),

thus \(p_i > 0 \), so \(\nu_i = 0 \).

\(p_i = \frac{\exp(s_i)}{\exp(\tau+1)} = \frac{\exp(s_i)}{Z} \)

Must find \(Z \) such that \(\sum_j p_j = 1 \).
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

- maximize \(\sum_j p_j s_j - p_j \log p_j \)
- subject to \(p \geq 0, \ p^T 1 = 1 \)

Lagrangian:

\[
L(p, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - p^T \nu + \tau (p^T 1 - 1)
\]

Optimality conditions (KKT):

- \(0 = \nabla_{p_i} L(p, \nu, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau \)
- \(p^T \nu = 0 \)
- \(p \in \Delta \)
- \(\nu \geq 0 \)

\log p_i = s_i + \nu_i - (\tau + 1) \)

if \(p_i = 0 \), r.h.s. must be \(-\infty\),
thus \(p_i > 0 \), so \(\nu_i = 0 \).

\(p_i = \frac{\exp(s_i)}{\exp(\tau + 1)} = \frac{\exp(s_i)}{Z} \)

Must find \(Z \) such that \(\sum_j p_j = 1 \).

Answer: \(Z = \sum_j \exp(s_j) \)
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

\[
\begin{align*}
\text{maximize} & \quad \sum_j p_j s_j - p_j \log p_j \\
\text{subject to} & \quad p \geq 0, \quad p^T 1 = 1
\end{align*}
\]

Lagrangian:

\[
L(p, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - p^T \nu + \tau (p^T 1 - 1)
\]

Optimality conditions (KKT):

\[
\begin{align*}
0 &= -s_i + \log p_i + 1 - \nu_i + \tau \\
p^T \nu &= 0 \\
p &\in \Delta \\
\nu &\geq 0
\end{align*}
\]

\[
\log p_i = s_i + \nu_i - (\tau + 1)
\]

if \(p_i = 0 \), r.h.s. must be \(-\infty\),

thus \(p_i > 0 \), so \(\nu_i = 0 \).

\[
p_i = \frac{\exp(s_i)}{\exp(\tau+1)} = \frac{\exp(s_i)}{Z}
\]

Must find \(Z \) such that \(\sum_j p_j = 1 \).

Answer: \(Z = \sum_j \exp(s_j) \)

So, \(p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \).

Classic result, e.g., [Boyd and Vandenberghe, 2004, Wainwright and Jordan, 2008]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]

[Niculae and Blondel, 2017]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg\max_{p \in \Delta} p^\top s - \Omega(p) \]

- argmax: \(\Omega(p) = 0 \)
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^T s - \Omega(p) \]

- argmax: \(\Omega(p) = 0 \)
- softmax: \(\Omega(p) = \sum_j p_j \log p_j \)

[Niculae and Blondel, 2017]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]

- argmax: \(\Omega(p) = 0 \)
- softmax: \(\Omega(p) = \sum_j p_j \log p_j \)
- sparsemax: \(\Omega(p) = \frac{1}{2} \| p \|_2^2 \)

[Niculae and Blondel, 2017, Martins and Astudillo, 2016]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]

- argmax: \(\Omega(p) = 0 \)
- softmax: \(\Omega(p) = \sum_j p_j \log p_j \)
- sparsemax: \(\Omega(p) = \frac{1}{2} \| p \|_2^2 \)
- \(\alpha \)-entmax: \(\Omega(p) = \frac{1}{\alpha(\alpha-1)} \sum_j p_j^\alpha \)

Generalized entropy interpolates in between [Tsallis, 1988]
Used in Sparse Seq2Seq: [Peters et al., 2019]
(Mon 13:50, poster session 2D)
Generalizing softmax: Smoothed argmaxes

\[\hat{\mathbf{p}}_{\Omega}(s) = \arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top s - \Omega(\mathbf{p}) \]

- **argmax**: \(\Omega(\mathbf{p}) = 0 \)
- **softmax**: \(\Omega(\mathbf{p}) = \sum_j p_j \log p_j \)
- **sparsemax**: \(\Omega(\mathbf{p}) = \frac{1}{2} \| \mathbf{p} \|_2^2 \)
- **\(\alpha \)-entmax**: \(\Omega(\mathbf{p}) = \frac{1}{\alpha (\alpha - 1)} \sum_j p_j^\alpha \)
- **fusedmax**: \(\Omega(\mathbf{p}) = \frac{1}{2} \| \mathbf{p} \|_2^2 + \sum_j |p_j - p_{j-1}| \)
- **csparsemax**: \(\Omega(\mathbf{p}) = \frac{1}{2} \| \mathbf{p} \|_2^2 + \lambda (a \leq p \leq b) \)
- **csoftmax**: \(\Omega(\mathbf{p}) = \sum_j p_j \log p_j + \lambda (a \leq p \leq b) \)
The structured case: Marginal polytope

- Each vertex corresponds to one such bit vector \(z \)
- Points inside correspond to marginal distributions: convex combinations of structured objects

\[\mu = p_1 z_1 + \ldots + p_N z_N, \quad p \in \Delta. \]

\(\mu = [0.3, 0.7, 0.3, 0.7, 0.1, 0.2] \)

\(p_1 = 0.2, \quad z_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1] \)
\(p_2 = 0.7, \quad z_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0] \)
\(p_3 = 0.1, \quad z_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0] \)
Niculae et al., 2018

$$\text{argmax}$$

$$\arg\max_p 2\Delta p^\top s + H(p)$$

$$\text{sparsemax}$$

$$\arg\max_p 2\Delta p^\top s - 1/2 \|p\|_2^2$$

MAP

$$\arg\max_\mu 2\Delta \mu^\top \eta + e H(\mu)$$

$$\text{SparseMAP}$$

$$\arg\max_\mu 2\Delta \mu^\top \eta - 1/2 \|\mu\|_2^2$$

Just like so[max relaxes arg max, marginals relax MAP differently.

Unlike arg max so[max, computation is not obvious!
argmax \(\arg \max_{p \in \Delta} p^\top s \)

Unlike argmax/sparsemax, computation is not obvious!
\[\text{argmax} \ \arg\max_{p \in \Delta} p^T s \]

\[\text{MAP} \ \arg\max_{\mu \in \mathcal{M}} \mu^T \eta \]

\[\text{SparseMAP} \ \arg\max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \| \mu \|_2^2 \]

Just like \(\text{so}\max \) relaxes \(\text{argmax} \), marginals relax MAP differently.

Unlike \(\text{argmax} / \text{so}\max \), computation is not obvious!

[diagram of \(\Delta \) and \(\mathcal{M} \)]
- **argmax** $\underset{p \in \Delta}{\arg \max} p^T s$
- **softmax** $\underset{p \in \Delta}{\arg \max} p^T s + H(p)$
- **MAP** $\underset{\mu \in \mathcal{M}}{\arg \max} \mu^T \eta$

Unlike argmax/softmax, computing is not obvious!
argmax $\arg \max_{p \in \Delta} p^T s$

softmax $\arg \max_{p \in \Delta} p^T s + H(p)$

MAP $\arg \max_{\mu \in \mathcal{M}} \mu^T \eta$

marginals $\arg \max_{\mu \in \mathcal{M}} \mu^T \eta + \tilde{H}(\mu)$
Just like softmax relaxes argmax, marginals relax MAP differentiably!
argmax \ arg \ max_{p \in \Delta} p^T s

MAP \ arg \ max_{\mu \in \mathcal{M}} \mu^T \eta

softmax \ arg \ max_{p \in \Delta} p^T s + H(p)
marginals \ arg \ max_{\mu \in \mathcal{M}} \mu^T \eta + \hat{H}(\mu)

Just like softmax relaxes argmax, marginals relax MAP differentiably!

Unlike argmax/softmax, computation is not obvious!
Algorithms for specific structures

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Best structure (MAP)</th>
<th>Marginals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence tagging</td>
<td>Viterbi</td>
<td>Forward-Backward</td>
</tr>
<tr>
<td></td>
<td>[Rabiner, 1989]</td>
<td>[Rabiner, 1989]</td>
</tr>
<tr>
<td>Constituent trees</td>
<td>CKY</td>
<td>Inside-Outside</td>
</tr>
<tr>
<td></td>
<td>[Kasami, 1966, Younger, 1967]</td>
<td>[Baker, 1979]</td>
</tr>
<tr>
<td></td>
<td>[Cocke and Schwartz, 1970]</td>
<td></td>
</tr>
<tr>
<td>Temporal alignments</td>
<td>DTW</td>
<td>Soft-DTW</td>
</tr>
<tr>
<td></td>
<td>[Sakoe and Chiba, 1978]</td>
<td>[Cuturi and Blondel, 2017]</td>
</tr>
<tr>
<td>Dependency trees</td>
<td>Max. Spanning Arborescence</td>
<td>Matrix-Tree</td>
</tr>
<tr>
<td>Assignments</td>
<td>Kuhn-Munkres</td>
<td>#P-complete</td>
</tr>
<tr>
<td></td>
<td>[Kuhn, 1955, Jonker and Volgenant, 1987]</td>
<td>[Valiant, 1979, Taskar, 2004]</td>
</tr>
<tr>
<td></td>
<td>[Valiant, 1979]</td>
<td></td>
</tr>
</tbody>
</table>

References:

- Rabiner, 1989
- Sakoe and Chiba, 1978
- Chu and Liu, 1965, Edmonds, 1967
- Kuhn, 1955, Jonker and Volgenant, 1987
- Valiant, 1979, Taskar, 2004
Algorithms for specific structures

Best structure (MAP)
- Viterbi
 - [Rabiner, 1989]
- CKY
 - [Kasami, 1966, Younger, 1967]
 - [Cocke and Schwartz, 1970]
- DTW
 - [Sakoe and Chiba, 1978]

Margins
- Forward-Backward
 - [Rabiner, 1989]
- Inside-Outside
 - [Baker, 1979]
- Soft-DTW
 - [Cuturi and Blondel, 2017]
- Matrix-Tree
 - [Kirchhoff, 1847]
- #P-complete
 - [Valiant, 1979, Taskar, 2004]

Sequence tagging
- Viterbi
 - [Rabiner, 1989]

Constituent trees
- CKY
 - [Kasami, 1966, Younger, 1967]
 - [Cocke and Schwartz, 1970]

Temporal alignments
- DTW
 - [Sakoe and Chiba, 1978]

Dependency trees
- Max. Spanning Arborescence
 - [Chu and Liu, 1965, Edmonds, 1967]

Assignments
- Kuhn-Munkres
 - [Kuhn, 1955, Jonker and Volgenant, 1987]

Assignments
- Kuhn-Munkres
 - [Kuhn, 1955, Jonker and Volgenant, 1987]
Derivatives of marginals 1: DP

Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.
Derivatives of marginals 1: DP

Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

Marginals in a sequence tagging model.

1. input: \(d\) tags, \(n\) tokens, \(\eta_U \in \mathbb{R}^{n \times d}\), \(\eta_V \in \mathbb{R}^{d \times d}\)
2. initialize \(\alpha_1 = 0, \beta_n = 0\)
3. for \(i \in 2, \ldots, n\) do
 # forward log-probabilities
 4. \(\alpha_{i,k} = \log \sum_{k'} \exp (\alpha_{i-1,k'} + (\eta_U)_{i,k} + (\eta_V)_{k',k})\) for all \(k\)
5. for \(i \in n-1, \ldots, 1\) do
 # backward log-probabilities
 6. \(\beta_{i,k} = \log \sum_{k'} \exp (\beta_{i+1,k'} + (\eta_U)_{i+1,k'} + (\eta_V)_{k,k'})\) for all \(k\)
7. \(Z = \sum_{k} \exp \alpha_{n,k}\) # partition function
8. return \(\mu = \exp (\alpha + \beta - \log Z)\) # marginals

deep-spin.github.io/tutorial
Derivatives of marginals 1: DP

Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

• Alg. consists of differentiable ops: PyTorch autograd can handle it! (v. bad idea)

Marginals in a sequence tagging model.

1. input: d tags, n tokens, $\eta_U \in \mathbb{R}^{n \times d}$, $\eta_V \in \mathbb{R}^{d \times d}$
2. initialize $\alpha_1 = 0$, $\beta_n = 0$
3. for $i \in 2, \ldots, n$ do
 # forward log-probabilities
 4. $\alpha_{i,k} = \log \sum_{k'} \exp (\alpha_{i-1,k'} + (\eta_U)_{i,k} + (\eta_V)_{k',k})$ for all k
5. for $i \in n-1, \ldots, 1$ do
 # backward log-probabilities
 6. $\beta_{i,k} = \log \sum_{k'} \exp (\beta_{i+1,k'} + (\eta_U)_{i+1,k'} + (\eta_V)_{k,k'})$ for all k
7. $Z = \sum_k \exp \alpha_{n,k}$
 # partition function
8. return $\mu = \exp (\alpha + \beta - \log Z)$
 # marginals
Derivatives of marginals 1: DP

Dynamic programming: marginals by **Forward-Backward, Inside-Outside**, etc.

- Alg. consists of differentiable ops: PyTorch autograd can handle it! *(v. bad idea)*
- Better book-keeping: Li and Eisner [2009], Mensch and Blondel [2018]

Marginals in a sequence tagging model.

1. **input:** d tags, n tokens, $\eta_U \in \mathbb{R}^{n \times d}$, $\eta_V \in \mathbb{R}^{d \times d}$
2. initialize $\alpha_1 = 0$, $\beta_n = 0$
3. for $i \in 2, \ldots, n$ do
 # forward log-probabilities
4. \[\alpha_{i,k} = \log \sum_{k'} \exp \left(\alpha_{i-1,k'} + (\eta_U)_{i,k} + (\eta_V)_{k',k} \right) \text{ for all } k \]
5. for $i \in n-1, \ldots, 1$ do
 # backward log-probabilities
6. \[\beta_{i,k} = \log \sum_{k'} \exp \left(\beta_{i+1,k'} + (\eta_U)_{i+1,k'} + (\eta_V)_{k,k'} \right) \text{ for all } k \]
7. $Z = \sum_k \exp \alpha_{n,k}$
 # partition function
8. **return** $\mu = \exp \left(\alpha + \beta - \log Z \right)$
 # marginals

`deep-spin.github.io/tutorial`
Derivatives of marginals 1: DP

Dynamic programming: marginals by **Forward-Backward, Inside-Outside**, etc.

- Alg. consists of differentiable ops: PyTorch autograd can handle it! (v. bad idea)
- Better book-keeping: Li and Eisner [2009], Mensch and Blondel [2018]
- With circular dependencies, this breaks! Can get an approximation Stoyanov et al. [2011]

Marginals in a sequence tagging model.

```plaintext
1 input: d tags, n tokens, \( \eta_U \in \mathbb{R}^{n \times d}, \eta_V \in \mathbb{R}^{d \times d} \)
2 initialize \( \alpha_1 = 0, \beta_n = 0 \)
3 for \( i \in 2, \ldots, n \) do
4 \( \alpha_{i,k} = \log \sum_{k'} \exp (\alpha_{i-1,k'} + (\eta_U)_{i,k} + (\eta_V)_{k',k}) \) for all \( k \)
5 for \( i \in n - 1, \ldots, 1 \) do
6 \( \beta_{i,k} = \log \sum_{k'} \exp (\beta_{i+1,k'} + (\eta_U)_{i+1,k} + (\eta_V)_{k,k'}) \) for all \( k \)
7 \( Z = \sum_k \exp \alpha_{n,k} \) # partition function
8 return \( \mu = \exp (\alpha + \beta - \log Z) \) # marginals
```
Derivatives of marginals 2: Matrix-Tree

$L(s)$: Laplacian of the edge score graph

$Z = \det L(s)$

$\mu = L(s)^{-1}$

$\nabla \mu = \nabla L^{-1} = L^{-1} \left(\frac{\partial L}{\partial \eta} \right) L^{-1}$
Structured Attention Networks

input x \rightarrow \eta \rightarrow \mu \rightarrow output y

CRF marginals (from forward-backward) give attention weights $\eta(0, 1)$.

Similar idea for projected dependency trees with inside-outside and non-projected with the Matrix-Treetheorem [Liu and Lapata, 2018].

[Kim et al., 2017]

[deep-spin.github.io/tutorial]
Structured Attention Networks

Input x is transformed through layers η and μ to produce output y.

CRF marginals (from forward–backward)
give attention weights $(0, 1)$.

Similar idea for projected dependency trees with inside–outside and non-projective with the Matrix-Tree Theorem [Liu and Lapata, 2018].

[Kim et al., 2017]
Structured Attention Networks

\[\eta(i) : \text{score of word } i \text{ receiving attention} \]
\[\eta(i, i+1) : \text{score of consecutive words receiving attention} \]
\[\mu(i) : \text{probability of word } i \text{ getting attention} \]
Structured Attention Networks

$\eta(i)$: score of word i receiving attention

$\eta(i, i+1)$: score of consecutive words receiving attention

$\mu(i)$: probability of word i getting attention

CRF marginals (from forward-backward) give attention weights $\in (0, 1)$
Structured Attention Networks

\[\eta(\text{dog} \rightarrow \text{on}): \text{arc score (tree constraints)} \]

\[\mu(\text{dog} \rightarrow \text{on}): \text{probability of arc} \]

CRF marginals (from forward–backward) give attention weights \(\in (0, 1) \)

Similar idea for projective dependency trees with inside–outside

[Kim et al., 2017]
Structured Attention Networks

CRF marginals (from forward–backward) give attention weights $\in (0, 1)$
Similar idea for projective dependency trees with inside–outside
and non-projective with the Matrix-Tree theorem [Liu and Lapata, 2018].
Differentiable Perturb & Parse
Extending Gumbel-Softmax to structured stochastic models

• Forward pass:
 sample structure z (approximately)
 $z = \arg \max_{z \in \mathcal{Z}} (\eta + \epsilon)^T z$

• Backward pass:
 pretend we did marginal inference
 $\tilde{\mu} = \arg \max_{\mu \in \mathcal{M}} (\eta + \epsilon)^T z + \tilde{H}(\mu)$
 (or some similar relaxation)
Back-propagating through marginals

Pros:

Familiar algorithms for NLPers, (Structured Action Networks:) All computations exact.

Cons:

(Structured Action Networks:) Forward pass marginals are dense; (Fixed by Perturb & MAP, at cost of rough approximation) Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])

Not applicable when marginals are unavailable. Case-by-case algorithms required, can get tedious.

Deep-Spin GitHub.io Tutorial
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
Back-propagating through marginals

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:

- Forward pass marginals are dense;
- ELcient & numerically stable back-propagation through DPs is tricky;
- Not applicable when marginals are unavailable.

Case-by-case algorithms required, can get tedious.
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:
- (Structured Attention Networks:) forward pass marginals are dense;
 (fixed by Perturb & MAP, at cost of rough approximation)
Back-propagating through marginals

Pros:

• Familiar algorithms for NLPers,
• (Structured Attention Networks:) All computations exact.

Cons:

• (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
• Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:
- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:
- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
- Case-by-case algorithms required, can get tedious.
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
- (Structured Attention Networks) All computations exact.

Cons:
- (Structured Attention Networks) Forward pass marginals are dense;
 (fixed by Perturb & MAP approximation)
- Efficient & numerically stable back-propagation through DPs is tricky;
 (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
- Case-by-case algorithms required, can get tedious.
Back-propagating through marginals

Pros:
• Familiar algorithms for NLPers,
• (Structured Attention Networks:) All computations exact.

Cons:
• (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
• Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
• Not applicable when marginals are unavailable.
• Case-by-case algorithms required, can get tedious.
\[\text{argmax} \arg \max_{p \in \Delta} p^\top s \]
\[\text{softmax} \arg \max_{p \in \Delta} p^\top s + H(p) \]
\[\text{sparsemax} \arg \max_{p \in \Delta} p^\top s - \frac{1}{2} \|p\|^2 \]
\[\text{MAP} \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta \]
\[\text{marginals} \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta + \tilde{H}(\mu) \]

[Niculae et al., 2018a]
- \textbf{argmax} \arginp \in \Delta \max p^\top s \\

- \textbf{softmax} \arginp \in \Delta \max p^\top s + H(p) \\

- \textbf{sparsemax} \arginp \in \Delta \max p^\top s - \frac{1}{2} \|p\|^2 \\

\begin{align*}
\text{MAP} & \argin\in\mathcal{M} \max \mu^\top \eta \\
\text{marginals} & \argin\in\mathcal{M} \max \mu^\top \eta + \tilde{H}(\mu) \\
\text{SparseMAP} & \argin\in\mathcal{M} \max \mu^\top \eta - \frac{1}{2} \|\mu\|^2
\end{align*}
SparseMAP solution

\[
\mu^* = \arg \max_{\mu \in M} \mu^\top \eta - \frac{1}{2} \| \mu \|^2
\]

\[
= 0.6 \cdot 0 + 0.4 \cdot 0 = 0.6
\]

(\(\mu^* \) is unique, but may have multiple decompositions \(p \). Active Set recovers a sparse one.)
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \| \mu \|^2 \]
Algorithms for SparseMAP

\[\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2 \]

linear constraints
(alas, exponentially many!)

quadratic objective

Completely modular: just add MAP
Algorithms for SparseMAP

$$\mu^* = \arg \max_{\mu \in M} \mu^T \eta - \frac{1}{2} \| \mu \|^2$$

linear constraints
(alas, exponentially many!)

quadratic objective

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]
Algorithms for SparseMAP

\[
\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2
\]

linear constraints (\textit{alas, exponentially many!})

quadratic objective

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of \(\mathcal{M} \)
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2 \]

linear constraints
(alas, exponentially many!)

quadratic objective

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of \(\mathcal{M} \)

\[\text{arg max} \quad \mu^T (\tilde{\eta} - \mu^{(t-1)}) \]

\[\mu \in \mathcal{M} \]

\[\tilde{\eta} \]

Completely modular: just add MAP
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta - \frac{1}{2} \|\mu\|^2 \]

linear constraints
(alas, exponentially many!)

quadratic objective

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

• select a new corner of \(\mathcal{M} \)
• update the (sparse) coefficients of \(p \)
 • Update rules: vanilla, away-step, pairwise
Algorithms for SparseMAP

\[\mathbf{\mu}^* = \arg \max_{\mathbf{\mu} \in \mathcal{M}} \mathbf{\mu}^\top \mathbf{\eta} - \frac{1}{2} \| \mathbf{\mu} \|^2 \]

linear constraints
(alas, exponentially many!)

quadratic objective

Conditional Gradient
[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

• select a new corner of \(\mathcal{M} \)
• update the (sparse) coefficients of \(\mathbf{p} \)
 • Update rules: vanilla, away-step, pairwise
 • Quadratic objective: Active Set
 a.k.a. Min-Norm Point, [Wolfe, 1976]
 [Martins et al., 2015, Nocedal and Wright, 1999,
 Vinyes and Obozinski, 2017]
Algorithms for SparseMAP

$$\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \| \mu \|^2$$

linear constraints (alas, exponentially many!)

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

Conditional Gradient

- select a new corner
- update the (sparse)

Active Set achieves finite & linear convergence!

A.k.a. Min-Norm Point, [Wolfe, 1976]

[Martins et al., 2015, Nocedal and Wright, 1999, Vinyes and Obozinski, 2017]
Algorithms for SparseMAP

$$\mu^* = \arg\max_{\mu \in M} \mu^T \eta - \frac{1}{2} \|\mu\|^2$$

linear constraints (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of M
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set
 a.k.a. Min-Norm Point, [Wolfe, 1976]
 [Martins et al., 2015, Nocedal and Wright, 1999,
 Vinyes and Obozinski, 2017]

Backward pass

$$\frac{\partial \mu}{\partial \eta}$$ is sparse

[deep-spin.github.io/tutorial 91]
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \| \mu \|^2 \]

linear constraints
(alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of \(\mathcal{M} \)
- update the (sparse) coefficients of \(p \)
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set
 a.k.a. Min-Norm Point, [Wolfe, 1976]
 [Martins et al., 2015, Nocedal and Wright, 1999, Vinyes and Obozinski, 2017]

Backward pass

\[\frac{\partial \mu}{\partial \eta} \text{ is sparse} \]

computing \((\frac{\partial \mu}{\partial \eta})^T dy \)
takes \(O(\text{dim}(\mu) \text{nnz}(p^*)) \)
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in M} \mu^T \eta - \frac{1}{2} \|\mu\|^2 \]

linear constraints (alas, exponentially many!)

Completely modular: just add MAP

Frank and Wolfe, 1956

- select a new corner of \(\mathcal{M} \)
- update the (sparse) coefficients of \(\mathbf{p} \)
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: **Active Set**
 - a.k.a. Min-Norm Point, [Wolfe, 1976]
 - [Martins et al., 2015, Nocedal and Wright, 1999, Vinyes and Obozinski, 2017]

Completely modular: just add MAP

[deep-spin.github.io/tutorial]
<table>
<thead>
<tr>
<th>Gentleman</th>
<th>Overlooking</th>
<th>Neighborhood</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

A police officer watches a situation closely.
Niculae et al., 2018a

A police officer watches a situation closely.

A gentleman overlooking a neighborhood situation.
Overview

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \quad L(\text{arg max}_z \pi_{\theta}(z \mid x)) \quad L(\mathbb{E}_{\pi_{\theta}(z|x)}[z]) \]

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- Straight-Through
- SPIGOT
- Structured Attn. Nets
- SparseMAP
Structured latent variables without sampling

\[\mathbb{E}_z [L(z)] = \sum_{z \in Z} L(\hat{y}(z)) \pi(z | x) \]
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

e.g., a TreeLSTM defined by \(z \)
Structured latent variables without sampling

$$
\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x)
$$

- How to define $\pi_\theta(z)$?
 $$
 \sum_h h^2 H \frac{\partial E}{\partial \theta} \propto \exp f_\theta(z)
 $$

 so $\arg\max$ $\pi_\theta(z)$ = 1 if $z = \text{MAP}(f_\theta(z))$ else 0

- $\arg\max$ Sparse MAP

- e.g., a TreeLSTM defined by z

- parsing model, using some scorer $f_\theta(z; x)$

- Exponentially large sum!

- All methods we've seen require sampling; hard in general.

STE/SPIGOT relax y in backward.
Structured latent variables without sampling

$$\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x)$$

sum over all possible trees
e.g., a TreeLSTM defined by z

Exponentially large sum!
Structured latent variables without sampling

How to define π_θ?

- Idea 1: Sum over all possible trees.
- Idea 2: Exponentially large sum.
- Idea 3: Parsing model, using some scorer $f_\theta(z; x)$.

E.g., a TreeLSTM defined by z.
Structured latent variables without sampling

\[E_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

sum over all possible trees

e.g., a TreeLSTM defined by \(z \)

to define \(\pi_\theta \)?

idea 1
idea 2
idea 3
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_{\phi}(z)) \pi_\theta(z \mid x) \]

How to define \(\pi_\theta \)?

1. Idea 1
2. Idea 2
3. Idea 3

e.g., a TreeLSTM defined by \(z \)

sum over all possible trees

\[\sum_{h \in \mathcal{H}} \frac{\partial \mathbb{E}[L(z)]}{\partial \theta} \]

parsing model, using some scorer \(f_\theta(z; x) \)

STE/SPIGOT relax \(y \) in backward.

Exponentially large sum!
Structured latent variables without sampling

\[E_Z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

How to define \(\pi_\theta \)?

- idea 1: \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
- idea 2
- idea 3

\[\sum_{h \in H} \frac{\partial E[L(z)]}{\partial \theta} \]
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]

How to define \(\pi_\theta \)?

- **idea 1**: \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
- **idea 2**: Softmax
- **idea 3**: SparseMAP, e.g., a TreeLSTM defined by \(z \)

To find the optimal parameters \(\theta \), we can maximize

\[\sum_{h \in \mathcal{H}} \frac{\partial \mathbb{E}[L(z)]}{\partial \theta} \]

sum over all possible trees

e.g., a TreeLSTM defined by \(z \)

parsing model, using some scorer \(f_\theta(z; x) \)

Exponentially large sum!

All methods we've seen require sampling; hard in general.

STE/SPIGOT relax \(\phi \) in backward.
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]

How to define \(\pi_\theta\)?

- Idea 1: \(\pi_\theta(z) \propto \exp(f_\theta(z))\)
- Idea 2: softmax
- Idea 3: e.g., a TreeLSTM defined by \(z\)

sum over all possible trees

parsing model, using some scorer \(f_\theta(z; x)\)

STE/SPIGOT relax \(y\) in backward.
Structured latent variables without sampling

\[
\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x)
\]

How to define \(\pi_\theta \)?

All methods we’ve seen require sampling; hard in general.

- idea 2
- idea 3
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]

How to define \(\pi_\theta \)?

1. **Idea 1**: \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
2. **Idea 2**: \(\pi_\theta(z) = 1 \) if \(z = \text{MAP}(f_\theta(\cdot)) \) else 0
3. **Idea 3**: Parsing model, using some scorer \(f_\theta(z; x) \)

\[\sum_{h \in \mathcal{H}} \frac{\partial \mathbb{E}[L(z)]}{\partial \theta} \]

Exponentially large sum!

All methods we've seen require sampling; hard in general.

STE/SPIGOT relax \(y \) in backward.
Structured latent variables without sampling

$$\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x)$$

How to define π_θ?

- **idea 1**: $\pi_\theta(z) \propto \exp(f_\theta(z))$
- **idea 2**: $\pi_\theta(z) = 1$ if $z = \text{MAP}(f_\theta(\cdot))$ else 0
- **idea 3**: sum over all possible trees

E.g., a TreeLSTM defined by z

Parsing model, using some scorer $f_\theta(z; x)$

$$\sum_{h \in \mathcal{H}} \frac{\partial \mathbb{E}[L(z)]}{\partial \theta}$$

Exponentially large sum!
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

How to define \(\pi_\theta \)?

Idea 1 \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)

Idea 2 \(\pi_\theta(z) = 1 \) if \(z = \text{MAP}(f_\theta(\cdot)) \) else 0

Idea 3

E.g., a TreeLSTM defined by \(z \)

sum over all possible trees

e.g., a TreeLSTM defined by \(z \)

Parsing model, using some scorer \(f_\theta(z; x) \)

Exponentially large sum!

All methods we've seen requires sampling; hard in general.

STE/SPIGOT relax \(y \) in backward.
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi(\theta | z | x) \]

How to define \(\pi(\theta) \)?

STE / SPIGOT relax \(\hat{y} \) in backward.

Idea 1
- \(\pi(\theta) \)

Idea 2
- \(\pi(\theta) = 1 \) if \(z = \text{MAP}(f(\theta; \cdot)) \) else 0

Idea 3
- \(\arg\max \)

sum over all possible trees

e.g., a TreeLSTM defined by \(z \)

depending on some parsing model, using some scorer \(f(\theta; z; x) \)

\(\partial \mathbb{E}[L(z)]/\partial \theta \)

Exponentially large sum!

All methods we've seen require sampling; hard in general.
Structured latent variables without sampling

$$E_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z | x)$$

How to define π_θ?

idea 1 \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)

idea 2 \(\pi_\theta(z) = 1 \) if \(z = \text{MAP}(f_\theta(\cdot)) \) else 0

idea 3 SparseMAP

- sum over all possible trees
- e.g., a TreeLSTM defined by \(z \)
- parsing model, using some scorer \(f_\theta(z; x) \)

- softmax
- argmax
- SparseMAP

STE/SPIGOT relax y in backward.
Structured latent variables without sampling

\[L(z) = 0.7 \times \hat{L}(z) + 0.3 \times \hat{L}(\phi(z), y) \]

recall our shorthand \(L(z) = L(\hat{y}_\phi(z), y) \)
Structured latent variables without sampling

\[
\mathcal{L}(\mathbf{z}) = 0.7 \times \mathcal{L}(\mathbf{\hat{\phi}}(\mathbf{z}), \mathbf{y}) + 0.3 \times \mathcal{L}(\mathbf{\hat{\phi}}(\mathbf{z}), \mathbf{y}) + 0 \times \mathcal{L}(\mathbf{\hat{\phi}}(\mathbf{z}), \mathbf{y}) + \ldots
\]

recall our shorthand \(\mathcal{L}(\mathbf{z}) = \mathcal{L}(\mathbf{\hat{\phi}}(\mathbf{z}), \mathbf{y}) \)
Structured latent variables without sampling

\[L(z) = 0.7 \times L(z) + 0.3 \times L(z) + 0 \times L(z) + \ldots \]

\[\mathbb{E}[L(z)] = 0.7 \times L(\hat{y}_\phi(z), y) + 0.3 \times L(\hat{y}_\phi(z), y) \]

recall our shorthand \(L(z) = L(\hat{y}_\phi(z), y) \)
Stanford Sentiment (Accuracy)

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socher et al</td>
<td>83.1</td>
</tr>
<tr>
<td>Bigram Naive Bayes</td>
<td></td>
</tr>
<tr>
<td>TreeLSTM w/ CoreNLP</td>
<td>83.2</td>
</tr>
<tr>
<td>TreeLSTM w/ SparseMAP</td>
<td>84.7</td>
</tr>
<tr>
<td>[Corro and Titov, 2019b]</td>
<td></td>
</tr>
<tr>
<td>GCN w/ CoreNLP</td>
<td>83.8</td>
</tr>
<tr>
<td>GCN w/ Perturb-and-MAP</td>
<td>84.6</td>
</tr>
<tr>
<td>[Niculae et al., 2018b]</td>
<td></td>
</tr>
</tbody>
</table>

Stanford Natural Language Inference (Accuracy)

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kim et al., 2017]</td>
<td></td>
</tr>
<tr>
<td>Simple Attention</td>
<td>86.2</td>
</tr>
<tr>
<td>Structured Attention</td>
<td>86.8</td>
</tr>
<tr>
<td>[Liu and Lapata, 2018]</td>
<td></td>
</tr>
<tr>
<td>100D SAN</td>
<td>86.8</td>
</tr>
<tr>
<td>Yogatama et al</td>
<td></td>
</tr>
<tr>
<td>100D RL-SPINN</td>
<td>80.5</td>
</tr>
<tr>
<td>[Choi et al., 2018]</td>
<td></td>
</tr>
<tr>
<td>100D ST Gumbel-Tree</td>
<td>82.6</td>
</tr>
<tr>
<td>300D</td>
<td>85.6</td>
</tr>
<tr>
<td>600D</td>
<td>86.0</td>
</tr>
<tr>
<td>[Corro and Titov, 2019b]</td>
<td></td>
</tr>
<tr>
<td>Latent Tree + 1 GCN</td>
<td>85.2</td>
</tr>
<tr>
<td>Latent Tree + 2 GCN</td>
<td>86.2</td>
</tr>
</tbody>
</table>
V. Conclusions
Is it syntax?!

• Unlike e.g. unsupervised parsing, the structures we learn are guided by a **downstream objective** (typically discriminative).

• They don't typically resemble grammatical structure (yet) [Williams et al., 2018] (future work: more inductive biases and constraints?)
Is it syntax?!

• Unlike e.g. unsupervised parsing, the structures we learn are guided by a **downstream objective** (typically discriminative).
• They don’t typically resemble grammatical structure (yet) [Williams et al., 2018] (future work: more inductive biases and constraints?)
• Common to compare latent structures with parser outputs. But is this always a meaningful comparison?
Syntax vs. Composition Order

CoreNLP parse, $p = 21.4\%$

★ lovely and poignant.
Syntax vs. Composition Order

$p = 22.6\%$

★ lovely and poignant .

CoreNLP parse, $p = 21.4\%$

★ lovely and poignant .
Syntax vs. Composition Order

Niculae et al., 2018b

\[p = 22.6\% \]

CoreNLP parse, \(p = 21.4\% \)

\[p = 15.33\% \]

\[* \text{lovely and poignant} . \]

\[* \text{a deep and meaningful film}. \]

\[p = 15.27\% \]

CoreNLP parse, \(p = 0\% \)

\[* \text{a deep and meaningful film}. \]

\[* \text{a deep and meaningful film}. \]
Overview

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]

\[L(\arg\max_z \pi_{\theta}(z \mid x)) \]

\[L(\mathbb{E}_{\pi_{\theta}(z|x)}[z]) \]

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- SparseMAP
- Straight-Through
- SPIGOT
- Structured Attn. Nets
- SparseMAP
Overview

\[E_{\pi_{\theta}(z|x)}[L(z)] \quad L\left(\arg \max_z \pi_{\theta}(z \mid x) \right) \quad L\left(E_{\pi_{\theta}(z|x)}[z] \right) \]

- REINFORCESPL
- Straight-Through Gumbel (Perturb & MAP)SPL,MRG
- SparseMAPMAP+
- Straight-ThroughMAP,MRG
- SPIGOTMAP+
- Structured Attn. NetsMRG
- SparseMAPMAP+

Computation:

- SPL: Sampling. (Simple in incremental/unstructured, hard for most global structures.)
- MAP: Finding the highest-scoring structure.
- MRG: Marginal inference.
Conclusions

- Latent structure models are desirable for interpretability, structural bias, and higher predictive power with fewer parameters.
- Stochastic latent variables can be dealt with RL or straight-through gradients.
- Deterministic argmax requires surrogate gradients (e.g. SPIGOT).
- Continuous relaxations of argmax include SANs and SparseMAP.
- Intuitively, some of these different methods are trying to do similar things or require the same building blocks (e.g. SPIGOT and SparseMAP).
- ... we didn't even get into deep generative models! These tools apply, but there are new challenges. [Corro and Titov, 2019a, Kim et al., 2019a,b, Kawakami et al., 2019]
References I

References III

References VI

