Latent Structure Models for NLP

Tsvetomila Mihaylova Instituto de Telecomunicações
Vlad Niculae Instituto de Telecomunicações
work with:
André Martins Instituto de Telecomunicações & IST & Unbabel
Nikita Nangia NYU

.deep-spin.github.io/tutorial
I. Introduction
Structured prediction and NLP

- **Structured prediction**: a machine learning framework for predicting structured, constrained, and interdependent outputs
- **NLP** deals with *structured* and *ambiguous* textual data:
 - machine translation
 - speech recognition
 - syntactic parsing
 - semantic parsing
 - information extraction
 - ...
Examples of structure in NLP

Dependency parsing

...
Examples of structure in NLP

POS tagging
- **VERB** dog
 - PREP on
 - **NOUN** wheels
- **NOUN** dog
 - PREP on
 - **NOUN** wheels
- **NOUN** dog
 - **DET** on
 - **NOUN** wheels

Dependency parsing
- ...
 - ⋆ dog on wheels
 - ⋆ dog on wheels
 - ⋆ dog on wheels

Word alignments
- dog ↠ hond
 - on ↠ op
 - wheels ↢ wielen
- dog ↢ hond
 - on ↢ op
 - wheels ↢ wielen
- dog ↢ hond
 - on ↢ op
 - wheels ↢ wielen

Exponentially many structures!
Examples of structure in NLP

Dependency parsing

...

⋆ dog on wheels

Exponentially many structures!

⋆ dog on wheels

...
NLP 5 years ago:
Structured prediction and pipelines
NLP 5 years ago:
Structured prediction and pipelines

- Big pipeline systems, connecting different structured predictors, trained separately
- **Advantages:** fast and simple to train, can rearrange pieces 😊
NLP 5 years ago:
Structured prediction and pipelines

• Big pipeline systems, connecting different structured predictors, trained separately
• **Advantages**: fast and simple to train, can rearrange pieces 😊
• **Disadvantage**: linguistic annotations required for each component 😞
NLP 5 years ago:
Structured prediction and pipelines

- Big pipeline systems, connecting different structured predictors, trained separately
- **Advantages:** fast and simple to train, can rearrange pieces 😊
- **Disadvantage:** linguistic annotations required for each component 😞
- **Bigger disadvantage:** error propagates through the pipeline 💩
NLP today:
End-to-end training
NLP today: End-to-end training

- Forget pipelines—train everything from scratch!
- No more error propagation or linguistic annotations! 🎉
NLP today:
End-to-end training

- Forget pipelines—train everything from scratch!
- No more error propagation or linguistic annotations!
- Treat everything as latent! 🙌
Representation learning

• Uncover hidden representations useful for the *downstream task*.
• Neural networks are well-suited for this: *deep computation graphs*.

input

positive
neutral
negative

depth-spin.github.io/tutorial
Representation learning

- Uncover hidden representations useful for the *downstream task*.
- Neural networks are well-suited for this: *deep computation graphs*.
- Neural representations are unstructured, inscrutable. Language data has underlying structure!
Latent structure models

- Seek *structured* hidden representations instead!

Input:
- positive
- neutral
- negative
Latent structure models

- Seek *structured* hidden representations instead!

They can bring us:
- More interpretability;
- Be less inducive bias;
- Hopefully: smaller models.

input

positive
neutral
negative

deep-spin.github.io/tutorial
Latent structure models

• Seek \textit{structured} hidden representations instead!
• They can bring us:
 • More interpretability;
Latent structure models

- Seek *structured* hidden representations instead!
- They can bring us:
 - More interpretability;
 - Better inductive bias;
Latent structure models

- Seek *structured* hidden representations instead!
- They can bring us:
 - More interpretability;
 - Better inductive bias;
 - Hopefully: smaller models.
Latent structure models aren’t so new!

They have a very long history in NLP:

- IBM Models for SMT (latent word alignments) [Brown et al., 1993]
- HMMs [Rabiner, 1989]
- CRFs with hidden variables [Quattoni et al., 2007]
- Latent PCFGs [Petrov and Klein, 2008, Cohen et al., 2012]

Trained with EM, spectral learning, method of moments, ...

Often, very strict assumptions (e.g. strong factorizations)

Today, neural networks opened up some new possibilities!
What this tutorial is about:

- Discrete, combinatorial latent structures
- Often the structure is inspired by some linguistic intuition
- We’ll cover both:
 - RL methods (structure built incrementally, reward coming from downstream task)
 - ... vs end-to-end differentiable approaches (global optimization, marginalization)
 - stochastic computation graphs
 - ... vs deterministic graphs.
- All plugged in *discriminative* neural models.
This tutorial is not about:

- It’s not about continuous latent variables
- It’s not about deep generative learning
- We won’t cover GANs, VAEs, etc.
- There are (very good) recent tutorials on deep variational models for NLP:
 - “Variational Inference and Deep Generative Models” (Schulz and Aziz, ACL 2018)
Unstructured vs structured

- Simplest example of structure: Just a discrete choice among N categories.
- We call this *unstructured*.
- It will provide an important starting point.
The challenge of discrete choices

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]
The challenge of discrete choices

\[s \]

\[z = 1 \]

\[z = 2 \]

\[\ldots \]

\[z = N \]
The challenge of discrete choices

\begin{align*}
 s & \quad z \\
 z = 1 & \quad z = 2 \\
 z = 2 & \quad \ldots \\
 \vdots & \quad \vdots \\
 z = N & \quad \vdots \\
\end{align*}

or, essentially,

\[\frac{\partial L(b, y)}{\partial w} = \text{?} \]
The challenge of discrete choices

input x

$s = f_\theta(x)$

output \hat{y}

s

$z = 1$

$z = 2$

\ldots

$z = N$

$\hat{y} = g_\phi(z, x)$
The challenge of discrete choices

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]

\[s = f_\theta(x) \]

\[\hat{y} = g_\phi(z, x) \]

\[\frac{\partial L(\hat{y}, y)}{\partial w} = ? \]
The challenge of discrete choices

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]

\[s = f_\theta(x) \]

\[\hat{y} = g_\phi(z, x) \]

\[\frac{\partial L(\hat{y}, y)}{\partial w} = ? \]

or, essentially,

\[\frac{\partial z}{\partial s} = ? \]
Discrete mappings are “flat”

\[
\begin{align*}
 &s &\quad &z \\
 & &z = 1 &\quad &\text{gray}
 & &z = 2 &\quad &\text{gray}
 & &\ldots &\quad &\text{white}
 & &z = N &\quad &\text{white}
\end{align*}
\]

\[
\frac{\partial z}{\partial s} = ?
\]
Discrete mappings are “flat”

\[
\begin{align*}
\frac{\partial z}{\partial s} &= ? \\
\end{align*}
\]

\[
\begin{array}{c|c}
\hline
s & z \\
\hline
 & 1 \\
 & 2 \\
 & \ldots \\
 & N \\
\hline
\end{array}
\]
Discrete mappings are “flat”

\[
\begin{align*}
 z = 1 & \quad \text{when } s = 0 \\
 z = 2 & \quad \text{when } s = 1 \\
 \ldots & \\
 z = N & \quad \text{when } s = N-1 \\
 \frac{\partial z}{\partial s} & = ?
\end{align*}
\]
Discrete mappings are “flat”

\[
\begin{array}{c|c}
 s & z \\
 \hline
 1 & \quad \vdots \quad \\
 2 & \\
 N & \\
 \end{array}
\]

\[
\frac{\partial z}{\partial s} = ?
\]
Discrete mappings are “flat”

\[
\begin{array}{c}
\text{s} \\
\text{\begin{tabular}{c}
\text{z = 1} \\
\text{z = 2} \\
\text{\ldots} \\
\text{z = N}
\end{tabular}}
\end{array}
\begin{array}{c}
\text{z} \\
\text{\begin{tabular}{c}
\text{\frac{\partial z}{\partial s} = ?}
\end{tabular}}
\end{array}
\]
Discrete mappings are “flat”

\[
\begin{align*}
\partial z & = ? \\
\frac{\partial z}{\partial s} & = ?
\end{align*}
\]
Discrete mappings are “flat”

\[s \]

\[
\begin{array}{c}
\text{z = 1} \\
\text{z = 2} \\
\vdots \\
\text{z = N}
\end{array}
\]

\[
\frac{\partial z}{\partial s} = ?
\]
Discrete mappings are “flat”

\[
\begin{align*}
 s & \quad z \\
 \text{z = 1} & \quad \text{z = 2} \\
 \text{...} & \\
 \text{z = N} & \\
 \frac{\partial z}{\partial s} &= ?
\end{align*}
\]
Argmax

\[\frac{\partial z}{\partial s} = 0 \]
Computing the most likely structure is a very high-dimensional argmax
Computing the most likely structure is a very high-dimensional argmax.

There are exponentially many structures

(\(s\) cannot fit in memory; we cannot “loop” over \(s\) nor \(z\)
Dealing with the combinatorial explosion

1. Incremental structures
 - Build structure **greedily**, as sequence of discrete choices (e.g., shift-reduce).
 - Scores (partial structure, action) tuples.
 - **Advantages:** flexible, rich histories.
 - **Disadvantages:** greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts
 - Optimizes **globally** (e.g. Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
 - Scores smaller parts.
 - **Advantages:** optimal, elegant, can handle hard & global constraints.
 - **Disadvantages:** strong assumptions.
The unstructured case: Probability simplex

\[\Delta \]

Each vertex is an indicator vector, representing one class:

\[z_c = [0, \ldots, 0, 1, \ldots, 0] \text{th position}, \ldots, 0 \]

Points inside are probability vectors, a convex combination of classes:

\[p = \sum_c p_c = 1 \]
The unstructured case: Probability simplex

- Each vertex is an *indicator vector*, representing one class:

\[z_c = [0, \ldots, 0, 1_\text{c^{th} position}}, 0, \ldots, 0]. \]
The unstructured case: Probability simplex

- Each vertex is an indicator vector, representing one class:
 \[z_c = [0, \ldots, 0, 1, 0, \ldots, 0] \text{ at the } c^{th} \text{ position} \]

- Points inside are probability vectors, a convex combination of classes:
 \[p \geq 0, \quad \sum_c p_c = 1. \]
What’s the analogous of \(\triangle \) for a structure?

- A structured object \(z \) can be represented as a *bit vector*.
What’s the analogous of \triangle for a structure?

- A structured object z can be represented as a *bit vector*.
- Example:
 - a dependency tree can be represented a $O(L^2)$ vector indexed by arcs
 - each entry is 1 iff the arc belongs to the tree
 - **structural constraints**: not all bit vectors represent valid trees!
What’s the analogous of \triangle for a structure?

- A structured object z can be represented as a *bit vector*.
- Example:
 - a dependency tree can be represented a $O(L^2)$ vector indexed by arcs
 - each entry is 1 iff the arc belongs to the tree
 - **structural constraints**: not all bit vectors represent valid trees!

\[
\begin{align*}
z_1 &= [1, 0, 0, 0, 1, 0, 0, 0, 1] \\
z_2 &= [0, 0, 1, 0, 0, 1, 1, 0, 0] \\
z_3 &= [1, 0, 0, 0, 1, 0, 0, 1, 0]
\end{align*}
\]

* dog on wheels

* dog on wheels

* dog on wheels
The structured case: Marginal polytope

[Wainwright and Jordan, 2008]
The structured case: Marginal polytope

- Each vertex corresponds to one such *bit vector* z
The structured case: Marginal polytope

- Each vertex corresponds to one such bit vector z
- Points inside correspond to marginal distributions: convex combinations of structured objects

$$
\mu = p_1 z_1 + \ldots + p_N z_N , \ p \in \Delta.
$$

Exponentially many terms

$p_1 = 0.2, \ z_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$
$p_2 = 0.7, \ z_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0] \ \Rightarrow \ \mu = [0.3, 0.7, 0.3, 0.7, 0.7, 0.1, 0.2]$
$p_3 = 0.1, \ z_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]$
Unstructured vs Structured

- Unstructured case: simplex Δ
- Structured case: marginal polytope \mathcal{M}
Unstructured vs Structured

- Unstructured case: simplex Δ
- Structured case: marginal polytope \mathcal{M}
Unstructured vs Structured

- Unstructured case: simplex Δ
- Structured case: marginal polytope \mathcal{M}
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]

\[s = W_s u \]
Example: Regression with latent categorization

$$u = \frac{1}{|x|} \sum_{j} E_{x_j}$$

$$s = W_s u$$

predict topic c ($z = e_c$)

Workarounds: circumventing the issue, bypassing discrete variables
Example: Regression with latent categorization

\[
\begin{align*}
 u &= \frac{1}{|x|} \sum_j E_{x_j} \\
 s &= W_s u \\
 v &= \text{tanh}(W_v[u, z]) \\
 \hat{y} &= W_y v \\
 L &= (\hat{y} - y)^2
\end{align*}
\]

predict topic \(c\) (\(z = e_c\))
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]

\[s = W_s u \]

\[v = \tanh (W_v[u, z]) \]

\[\hat{y} = W_y v \]

\[L = (\hat{y} - y)^2 \]
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]
\[s = W_s u \]
\[v = \tanh (W_v [u, z]) \]
\[\hat{y} = W_y v \]
\[L = (\hat{y} - y)^2 \]

\[\frac{\partial L}{\partial W_s} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial v} \frac{\partial v}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial W_s} \equiv 0 \]
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_j \]

\[\hat{y} = W_v \tanh (W_v [u, z]) \]

\[L = (\hat{y} - y)^2 \]

Workarounds: circumventing the issue, bypassing discrete variables
Example: Regression with latent categorization

\[
\begin{align*}
\text{input } x & \rightarrow \text{embeddings } E \\
& \quad \vdots \\
\text{embeddings } E & \rightarrow u \\
\rightarrow & \quad W_s \\
& \quad \vdots \\
& \quad S \\
& \quad \vdots \\
& \quad Z \\
& \quad \vdots \\
& \quad v \\
\rightarrow & \quad W_v \\
& \quad \vdots \\
& \quad W_y \\
\rightarrow & \quad \text{output } \hat{y} \\
\end{align*}
\]

\[
u = \frac{1}{|x|} \sum_j E_{x_j}
\]

\[
s = W_s u
\]

\[
v = \tanh (W_v [u, z])
\]

\[
\hat{y} = W_y v \\
L = (\hat{y} - y)^2
\]

Option 1. Pretrain latent classifier \(W_s \)
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]
\[s = W_s u \]
\[v = \tanh (W_v[u, z]) \]
\[\hat{y} = W_y v \]
\[L = (\hat{y} - y)^2 \]

Option 2. Multi-task learning
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]

Tackling discreteness end-to-end

\[L = (\hat{y} - y)^2 \]
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]
\[s = W_s u \]
\[v = \text{tanh} \left(W_v [u, z] \right) \]
\[\hat{y} = W_y v \]
\[L = \mathbb{E}_z (\hat{y} - y)^2 \]

Option 3. Stochasticity! \(\frac{\partial \mathbb{E}_z (\hat{y}(z) - y)^2}{\partial W_s} \neq 0 \)
Example: Regression with latent categorization

\[
\begin{align*}
 u &= \frac{1}{|x|} \sum_j E_{x_j} \\
 s &= W_s u \\
 v &= \tanh (W_v [u, z]) \\
 \hat{y} &= W_y v \\
 L &= (\hat{y} - y)^2
\end{align*}
\]

Option 4. Gradient surrogates (e.g. straight-through, \(\frac{\partial z}{\partial s} \leftarrow I \))
Example: Regression with latent categorization

\[u = \frac{1}{|x|} \sum_j E_{x_j} \]

\[s = W_s u \]

\[v = \tanh (W_v [u, p]) \]

\[\hat{y} = W_y v \]

\[L = (\hat{y} - y)^2 \]

Option 5. Continuous relaxation (e.g. softmax)
Dealing with discrete latent variables

1. Pre-train external classifier
2. Multi-task learning
3. Stochastic latent variables
4. Gradient surrogates
5. Continuous relaxation
Dealing with discrete latent variables

1. Pre-train external classifier
2. Multi-task learning
3. Stochastic latent variables (Part 2)
4. Gradient surrogates (Part 3)
5. Continuous relaxation (Part 4)
Roadmap of the tutorial

- Part 1: Introduction ✓
- Part 2: Reinforcement learning

Coffee Break

- Part 3: Gradient surrogates
- Part 4: End-to-end differentiable models (1/2)

Coffee Break

- Part 4: End-to-end differentiable models (2/2)
- Part 5: Conclusions
II. Reinforcement Learning Methods
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its known parse tree \(z\),
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\)
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,

\[
L(\hat{y}(z; x), y)
\]
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its known parse tree \(z\),
 we can make a prediction \(\hat{y}(z; x)\)
 and incur a loss,

\[
L(\hat{y}(z; x), y) \text{ or simply } L(z)
\]
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,
 \[
 L(\hat{y}(z; x), y) \text{ or simply } L(z)
 \]
- But we don’t know \(z\)!
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,
 \[L(\hat{y}(z; x), y) \text{ or simply } L(z) \]

- But we don’t know \(z\)!
- In this section:
 we jointly learn a structured prediction model \(\pi_\theta(z \mid x)\)
Latent structure via marginalization

- Given a sentence-label pair \((x, y)\) and its **known** parse tree \(z\), we can make a prediction \(\hat{y}(z; x)\) and incur a loss,

\[
L(\hat{y}(z; x), y) \text{ or simply } L(z)
\]

- But we don’t know \(z\)!
- In this section:
 - we jointly learn a structured prediction model \(\pi_\theta(z \mid x)\) by optimizing the **expected loss**,

\[
\mathbb{E}_{\pi_\theta(z \mid x)}[L(z)]
\]
But first, supervised SPINN
Stack-augmented Parser-Interpreter Neural Network

[Bowman et al., 2016]
Stack-augmented Parser-Interpreter Neural-Network

- Joint learning: Combines a constituency parser and a sentence representation model.
Stack-augmented Parser-Interpreter Neural-Network

- Joint learning: Combines a constituency parser and a sentence representation model.
- The parser, $f_\theta(x)$ is a transition-based shift-reduce parser. It looks at top two elements of stack and top element of the buffer.
Stack-augmented Parser-Interpreter Neural-Network

- Joint learning: Combines a constituency parser and a sentence representation model.
- The parser, $f_\theta(x)$ is a transition-based \textbf{shift-reduce} parser. It looks at top two elements of stack and top element of the buffer.
- \textbf{TreeLSTM} combines top two elements of the stack when the parser chooses the \textbf{REDUCE} action.
Stack-augmented Parser-Interpreter Neural Network

[Bowman et al., 2016]

Deep-Spin.github.io/tutorial
Stack-augmented Parser-Interpreter Neural Network

[Bowman et al., 2016]
Stack-augmented Parser-Interpreter Neural Network

[Bowman et al., 2016]
Shift-Reduce parsing

We can write a shift-reduce style parse as a sequence of Bernoulli random variables,

$$z = \{z_1, \ldots, z_{2L-1}\}$$

where, $$z_j \in \{0, 1\} \ \forall j \in [1, 2L - 1]$$
Shift-Reduce parsing

A sequence of Bernoulli trials but with conditional dependence,

\[p(z_1, z_2, \ldots, z_{2L-1}) = \prod_{j=1}^{2L-1} p(z_j \mid z_{<j}) \]
But now, removes syntactic supervision from SPINN.

We model the parse, z, as a latent variable scored by $f_\theta(x)$. With shift-reduce parsing, we're making discreet decisions. REINFORCE as a "natural" solution.
Latent structure learning with SPINN

• But now, remove syntactic supervision from SPINN.
Latent structure learning with SPINN

- But now, remove syntactic supervision from SPINN.

- We model the parse, z, as a latent variable scored by $f_\theta(x)$.
Latent structure learning with SPINN

- But now, remove syntactic supervision from SPINN.

- We model the parse, z, as a latent variable scored by $f_{\theta}(x)$.

- With shift-reduce parsing, we’re making discrete decisions ⇒ REINFORCE as a “natural” solution.
Unsupervised SPINN
Unsupervised SPINN

No syntactic supervision.
Only reward is from the downstream task.
We only get this reward after parsing the full sentence.
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
Some basic terminology,

- The action space is \(z_j \in \{\text{SHIFT, REDUCE}\} \), and \(z \) is a sequence of actions.
- Training parser network parameters, \(\theta \) with REINFORCE.
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
- Training parser network parameters, θ with REINFORCE
- The state, h, is the top two elements of the stack and the top element of the buffer.
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
- Training parser network parameters, θ with REINFORCE
- The state, h, is the top two elements of the stack and the top element of the buffer.
- Learning a policy network $\pi(z \mid h; \theta)$
Some basic terminology,

- The action space is \(z_j \in \{ \text{SHIFT, REDUCE} \} \), and \(z \) is a sequence of actions.
- Training parser network parameters, \(\theta \) with REINFORCE
- The state, \(h \), is the top two elements of the stack and the top element of the buffer.
- Learning a policy network \(\pi(z | h; \theta) \)
- Maximize the reward, where \(R \) is performance on the downstream task like sentence classification.

[Williams, 1992]
Some basic terminology,

- The action space is $z_j \in \{\text{SHIFT, REDUCE}\}$, and z is a sequence of actions.
- Training parser network parameters, θ with REINFORCE
- The state, h, is the top two elements of the stack and the top element of the buffer.
- Learning a policy network $\pi(z_j|h; \theta)$.
- Maximizing the reward, where R is performance on the downstream task like sentence classification.

NOTE: Only a single reward at the end of parsing.
Through the looking glass of REINFORCE

\[\nabla_\theta \mathbb{E}_{z \sim \pi_\theta(z|x)} [L(z)] \]
Through the looking glass of REINFORCE

\[\nabla_{\theta} E_{z \sim \pi_{\theta}(z|x)}[L(z)] = \nabla_{\theta} \left[\sum_z L(z) \pi_{\theta}(z \mid x) \right] \]

(Need to turn it into \(E[\cdot] \) so we can MC-estimate)
Through the looking glass of REINFORCE

\[\nabla_{\theta} \mathbb{E}_{z \sim \pi_{\theta}(z|x)}[L(z)] = \nabla_{\theta} \left[\sum_{z} L(z) \pi_{\theta}(z | x) \right] \]

(Need to turn it into \(\mathbb{E}[\cdot] \) so we can MC-estimate)

\[= \sum_{z} L(z) \nabla_{\theta} \pi_{\theta}(z | x) \]

\(\nabla \log f = \nabla f f \), so \(\nabla f = f \nabla \log f \).
Through the looking glass of REINFORCE

\[
\nabla_{\theta} \mathbb{E}_{z \sim \pi_{\theta}(z|x)} [L(z)] = \nabla_{\theta} \left[\sum_z L(z) \pi_{\theta}(z \mid x) \right]
\]

(Need to turn it into \(\mathbb{E}[\cdot] \) so we can MC-estimate)

\[
= \sum_z L(z) \nabla_{\theta} \pi_{\theta}(z \mid x)
\]

\[
\nabla \log f = \frac{\nabla f}{f}, \text{ so } \nabla f = f \nabla \log f.
\]
Through the looking glass of REINFORCE

\[\nabla_{\theta} \mathbb{E}_{z \sim \pi_{\theta}(z|x)}[L(z)] = \nabla_{\theta} \left[\sum_{z} L(z) \pi_{\theta}(z \mid x) \right] \]

(Need to turn it into \(\mathbb{E}[\cdot] \) so we can MC-estimate)

\[= \sum_{z} L(z) \nabla_{\theta} \pi_{\theta}(z \mid x) \]

\[= \sum_{z} L(z) \pi_{\theta}(z \mid x) \nabla_{\theta} \log \pi_{\theta}(z \mid x) \]
Through the looking glass of REINFORCE

\[\nabla_\theta \mathbb{E}_{z \sim \pi_\theta(z|x)} [L(z)] = \nabla_\theta \left[\sum_z L(z) \pi_\theta(z \mid x) \right] \]

(Need to turn it into \(\mathbb{E}[\cdot] \) so we can MC-estimate)

\[= \sum_z L(z) \nabla_\theta \pi_\theta(z \mid x) \]

\[= \sum_z L(z) \pi_\theta(z \mid x) \nabla_\theta \log \pi_\theta(z \mid x) \]

\[= \mathbb{E}_{z \sim \pi_\theta(z|x)} [L(z) \nabla_\theta \log \pi_\theta(z \mid x)] \]
Yogatama et al. [2017] uses REINFORCE to train SPINN!
Yogatama et al. [2017] uses REINFORCE to train SPINN!
However, this vanilla implementation isn’t very effective at learning syntax.
Yogatama et al. [2017] uses REINFORCE to train SPINN!

However, this vanilla implementation isn’t very effective at learning syntax. This model fails to solve a simple toy problem.
Toy problem: ListOps

\[[\text{max} \ 2 \ 9 \ \text{[min} \ 4 \ 7 \] \ 0 \]\]
Toy problem: ListOps

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>74.4</td>
</tr>
<tr>
<td>RL-SPINN</td>
<td>64.8</td>
</tr>
<tr>
<td>TreeLSTM with ground-truth trees</td>
<td>98.7</td>
</tr>
</tbody>
</table>

[Nangia and Bowman, 2018]
Toy problem: ListOps

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>74.4</td>
</tr>
<tr>
<td>RL-SPINN</td>
<td>4.8</td>
</tr>
<tr>
<td>TreeLSTM with ground-truth trees</td>
<td>8.7</td>
</tr>
</tbody>
</table>

But why?

[Nangia and Bowman, 2018]
RL-SPINN’s Troubles

This system faces at least two big problems,
This system faces at least two big problems,

1. High variance of gradients
2. Coadaptation
High variance

- We have a single reward at the end of parsing.
High variance

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space! The Catalan number of binary trees.
High variance

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space! **Catalan number** of binary trees.

\[
\begin{align*}
3 \text{ tokens} & \Rightarrow 5 \text{ trees} \\
5 \text{ tokens} & \Rightarrow 42 \text{ trees} \\
10 \text{ tokens} & \Rightarrow 16796 \text{ trees}
\end{align*}
\]
High variance

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space! \textbf{Catalan number} of binary trees.
- And the policy is stochastic.
High variance

So, sometimes the policy lands in a “rewarding state”:

\[
[\text{sm} \ [\text{sm} \ [\text{sm} \ [\text{max} \ 5 \ 6] \ 2] \ 0] \ 5 \ 0 \ 8 \ 6]\]

Figure: Truth: 7; Pred: 7
High variance

Sometimes it doesn’t:

```
```

Figure: Truth: 6; Pred: 5
High variance

Catalan number of parses means we need many many samples to lower variance!
High variance

Catalan number of parses means we need many many samples to lower variance!

Possible solutions:

1. Gradient normalization
2. Control variates, aka baselines
Control variates

- A simple control variate: moving average of recent rewards
Control variates

- A simple control variate: moving average of recent rewards
- Parameters are updated using the advantage which is the difference between the reward, R, and the baseline prediction.
Control variates

- A simple control variate: moving average of recent rewards
- Parameters are updated using the advantage which is the difference between the reward, R, and the baseline prediction.

So,

$$
\nabla \mathbb{E}_{z \sim \pi(z)} = \mathbb{E}_{z \sim \pi(z)} [(L(z) - b(x)) \nabla \pi(z)]
$$
This system faces two big problems,

1. High variance of gradients
2. Coadaptation
Coadaptation problem

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.
Coadaptation problem

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Generally, ϕ will be learned more quickly than θ, making it harder to explore the parsing search space and optimize for θ.

 Difference in variance of two gradient estimates. Possible solution: Proximal Policy Optimization [Schulman et al., 2017].
Coadaptation problem

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Generally, ϕ will be learned more quickly than θ, making it harder to explore the parsing search space and optimize for θ.

Difference in variance of two gradient estimates.
Coadaptation problem

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Generally, ϕ will be learned more quickly than θ, making it harder to explore the parsing search space and optimize for θ.

Difference in variance of two gradient estimates.

Possible solution: Proximal Policy Optimization [Schulman et al., 2017].
Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

1. Input dependent control variate
2. Gradient normalization
3. Proximal Policy Optimization
Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

1. Input dependent control variate
2. Gradient normalization
3. Proximal Policy Optimization

They solve ListOps!
Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

1. Input dependent control variate
2. Gradient normalization
3. Proximal Policy Optimization

They solve ListOps!

However, does not learn English grammars.
Should I? Shouldn’t I?

• Unbiased!
Should I? Shouldn’t I?

- Unbiased!
- High variance 😞
Should I? Shouldn’t I?

- Unbiased!
- In a simple setting, with enough tricks, it can work! 😊

- High variance 😞
Should I? Shouldn’t I?

- Unbiased!
- In a simple setting, with enough tricks, it can work! 😊
- High variance 😞
- Has not yet been very effective at learning English syntax.
Roadmap of the tutorial

- Part 1: Introduction ✓
- Part 2: Reinforcement learning ✓

Coffee Break

- Part 3: Gradient surrogates
- Part 4: End-to-end differentiable models (1/2)

Coffee Break

- Part 4: End-to-end differentiable models (2/2)
- Part 5: Conclusions
III. Gradient Surrogates
So far:

- Tackled **expected loss** in a **stochastic computation graph**

\[
\mathbb{E}_{\pi_\theta(z|x)}[L(z)]
\]

3A: try to optimize the **deterministic loss** directly
3B: use this strategy to reduce variance in the stochastic model.
So far:

- Tackled **expected loss** in a **stochastic computation graph**

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]

- Optimized with the **REINFORCE** estimator.

Additional discussion:

3A: Try to optimize the deterministic loss directly

3B: Use this strategy to reduce variance in the stochastic model.
So far:

- Tackled **expected loss** in a **stochastic computation graph**
 \[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.
So far:

- Tackled \textbf{expected loss} in a \textbf{stochastic computation graph}

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]

- Optimized with the \textbf{REINFORCE} estimator.
- Struggled with variance & sampling.

In this section:

- Consider the \textbf{deterministic alternative}:
So far:

- Tackled **expected loss** in a **stochastic computation graph**
 \[
 \mathbb{E}_{\pi_\theta(z|x)}[L(z)]
 \]
- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

- Consider the **deterministic alternative**:

 pick highest-score structure
 \[
 \hat{z}(x) := \arg \max_{z \in M} \pi_\theta(z \mid x)
 \]
So far:

- Tackled **expected loss** in a **stochastic computation graph**

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

- Consider the **deterministic alternative**: pick highest-score structure \(\hat{z}(x) := \arg \max_{z \in \mathcal{M}} \pi_{\theta}(z | x) \) incur loss \(L(\hat{z}(x)) \)
So far:

- Tackled **expected loss** in a **stochastic computation graph**
 \[E_{\pi \theta(z|x)}[L(z)] \]
- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

- Consider the **deterministic alternative:**
 - pick highest-score structure \(\hat{z}(x) := \arg \max_{z \in M} \pi_\theta(z | x) \)
 - incur loss \(L(\hat{z}(x)) \)
- 3A: try to optimize the deterministic loss directly
So far:

- Tackled **expected loss** in a **stochastic computation graph**
 \[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]
- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

- Consider the **deterministic alternative**:
 \[\hat{z}(x) := \arg\max_{z \in \mathcal{M}} \pi_{\theta}(z | x) \]
 incur loss \[L(\hat{z}(x)) \]
- 3A: try to optimize the deterministic loss directly
- 3B: use this strategy to reduce variance in the stochastic model.
Recap: The argmax problem

\[z = \text{arg max}(s) \]

\[\frac{\partial z}{\partial s} = 0 \]
So \[z = 1 \]

\[z = 2 \]

\[z = N \]

\[p_j = \exp(s_j)/Z \]

\[\frac{\partial p}{\partial s} = \text{diag}(p) - pp^\top \]
Straight-Through Estimator

[Forward]: $z = \arg \max(s)$

[Backward]: pretend z was some continuous $\sim p$;

\[
\frac{\partial \sim p}{\partial s} = 0
\]

Simplest identity, $\sim p(s) = s$, \[\frac{\partial \sim p}{\partial s} = I\]

Others, e.g. softmax $\sim p(s) = \text{softmax}(s)$, \[\frac{\partial \sim p}{\partial s} = \text{diag}(\sim p) - \sim p \sim p^\top\]

More explanation in a while

What about the structured case?
Straight-Through Estimator

- **Forward**: $z = \arg \max(s)$
Straight-Through Estimator

- **Forward:** $z = \text{arg max}(s)$

[Hinton, 2012, Bengio et al., 2013]
Straight-Through Estimator

- **Forward**: $z = \arg\max(s)$
- **Backward**: pretend z was some continuous \tilde{p}; $\frac{\partial \tilde{p}}{\partial s} \neq 0$
Straight-Through Estimator

- **Forward**: $z = \text{arg max}(s)$
- **Backward**: pretend z was some continuous \tilde{p}; $\frac{\partial \tilde{p}}{\partial s} \neq 0$
Straight-Through Estimator

- **Forward**: \(z = \arg\max(s) \)
- **Backward**: pretend \(z \) was some continuous \(\tilde{p} \); \(\frac{\partial \tilde{p}}{\partial s} \neq 0 \)
 - simplest: identity, \(\tilde{p}(s) = s, \frac{\partial \tilde{p}}{\partial s} = I \)
Straight-Through Estimator

- **Forward**: \(z = \arg\max(\mathbf{s}) \)
- **Backward**: pretend \(z \) was some continuous \(\tilde{\mathbf{p}} \); \(\frac{\partial \tilde{\mathbf{p}}}{\partial \mathbf{s}} \neq 0 \)
 - simplest: identity, \(\tilde{\mathbf{p}}(\mathbf{s}) = \mathbf{s}, \frac{\partial \tilde{\mathbf{p}}}{\partial \mathbf{s}} = \mathbf{I} \)
 - others, e.g. softmax \(\tilde{\mathbf{p}}(\mathbf{s}) = \text{softmax}(\mathbf{s}), \frac{\partial \tilde{\mathbf{p}}}{\partial \mathbf{s}} = \text{diag}(\tilde{\mathbf{p}}) - \tilde{\mathbf{p}}\tilde{\mathbf{p}}^\top \)

[Hinton, 2012, Bengio et al., 2013]
Straight-Through Estimator

- **Forward**: $z = \arg\max(s)$
- **Backward**: pretend z was some continuous \tilde{p}; $\frac{\partial \tilde{p}}{\partial s} \neq 0$
 - simplest: identity, $\tilde{p}(s) = s$, $\frac{\partial \tilde{p}}{\partial s} = I$
 - others, e.g. softmax $\tilde{p}(s) = \text{softmax}(s)$, $\frac{\partial \tilde{p}}{\partial s} = \text{diag}(\tilde{p}) - \tilde{p} \tilde{p}^T$
- More explanation in a while
Straight-Through Estimator

- **Forward**: $z = \arg\max(s)$
- **Backward**: pretend z was some continuous \tilde{p}; $\frac{\partial \tilde{p}}{\partial s} \neq 0$
 - simplest: identity, $\tilde{p}(s) = s$, $\frac{\partial \tilde{p}}{\partial s} = I$
 - others, e.g. softmax $\tilde{p}(s) = \text{softmax}(s)$, $\frac{\partial \tilde{p}}{\partial s} = \text{diag}(\tilde{p}) - \tilde{p}\tilde{p}^T$
- More explanation: What about the structured case?
Dealing with the combinatorial explosion

1. Incremental structures
 - Build structure **greedily**, as sequence of discrete choices (e.g., shift-reduce).
 - Scores (partial structure, action) tuples.
 - **Advantages**: flexible, rich histories.
 - **Disadvantages**: greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts
 - Optimizes **globally** (e.g. Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
 - Scores smaller parts.
 - **Advantages**: optimal, elegant, can handle hard & global constraints.
 - **Disadvantages**: strong assumptions.
STE for incremental structures

Build a structure as a sequence of discrete choices (e.g., shift-reduce).

Assign a score to any (parallel structure, action) tuple. In this case, we just apply the straight-through emission for each step.

Forward: the highest scoring action for each step.

Backward: pretend that we had used a discriminable surrogate function.

STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.

STE for incremental structures

• Build a structure as a sequence of discrete choices (e.g., shift-reduce)
• Assigns a score to any (partial structure, action) tuple.
• In this case, we just apply the straight-through estimator for each step.
STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- **Forward:** the highest scoring action for each step
STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- **Forward**: the **highest scoring action** for each step
- **Backward**: pretend that we had used a **differentiable surrogate function**
STE for incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- **Forward**: the **highest scoring action** for each step
- **Backward**: pretend that we had used a **differentiable surrogate function**

STE for the factorized approach

Requires a bit more work:

- Recap: marginal polytope
- Predicting structures globally: Maximum A Posteriori (MAP)
- Deriving Straight-Through and SPIGOT
The structured case: Marginal polytope

[Wainwright and Jordan, 2008]
The structured case: Marginal polytope

- Each vertex corresponds to one such bit vector z
The structured case: Marginal polytope

- Each vertex corresponds to one such *bit vector* \mathbf{z}
- Points inside correspond to *marginal distributions*: convex combinations of structured objects

$$\mu = p_1 \mathbf{z}_1 + \ldots + p_N \mathbf{z}_N \ , \ p \in \Delta.$$

exponentially many terms

$$p_1 = 0.2, \quad \mathbf{z}_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$$
$$p_2 = 0.7, \quad \mathbf{z}_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0] \quad \Rightarrow \quad \mu = [0.3, 0.7, 0.3, 0.7, 0.7, 0.1, 0.2].$$
$$p_3 = 0.1, \quad \mathbf{z}_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]$$
Predicting structures from scores of parts

- $\eta(i \rightarrow j)$: score of arc $i \rightarrow j$
- $z(i \rightarrow j)$: is arc $i \rightarrow j$ selected?
Predicting structures from scores of parts

- $\eta(i \rightarrow j)$: score of arc $i \rightarrow j$
- $z(i \rightarrow j)$: is arc $i \rightarrow j$ selected?
- Task-specific algorithm for the highest-scoring structure.
Algorithms for specific structures

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Algorithms</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best structure (MAP)</td>
<td>Viterbi</td>
<td>[Rabiner, 1989]</td>
</tr>
<tr>
<td></td>
<td>CKY</td>
<td></td>
</tr>
<tr>
<td>Sequence tagging</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Rabiner, 1989]</td>
<td></td>
</tr>
<tr>
<td>Constituent trees</td>
<td>CKY</td>
<td>[Kasami, 1966], [Younger, 1967]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Cocke and Schwartz, 1970]</td>
</tr>
<tr>
<td>Temporal alignments</td>
<td>DTW</td>
<td>[Sakoe and Chiba, 1978]</td>
</tr>
<tr>
<td>Dependency trees</td>
<td>Max. Spanning Arborescence</td>
<td>[Chu and Liu, 1965], [Edmonds, 1967]</td>
</tr>
<tr>
<td>Assignments</td>
<td>Kuhn-Munkres</td>
<td>[Kuhn, 1955], [Jonker and Volgenant, 1987]</td>
</tr>
</tbody>
</table>
Structured Straight-Through

- **Forward pass:**
 Find highest-scoring structure:
 \[z = \arg \max_{z \in Z} \eta^T z \]
- **Backward pass:**
 pretend we used \(\tilde{\mu} = \eta \).
Straight-Through Estimator
Revisited

In the forward pass, $z = \arg\max(s)$. If we had labels (multi-task learning), $L_{MTL} = L_y(z) + L_{hid}(s, z_{true})$.

One choice: perceptron loss
$L_{hid}(s, z_{true}) = s^\top z - s^\top z_{true}$; $\frac{\partial L_{hid}}{\partial s} = z - z_{true}$.

We don't have labels! Induce labels by "pulling back" the downstream target: the "best" (unconstrained) latent value would be: $\arg\min_{\tilde{z}} \tilde{z}^2 R_D L^y(\tilde{z})$, y.

One gradient descent step starting from z_{true}:
$z_{true} - \frac{\partial L_{MTL}}{\partial z} \frac{\partial L_{MTL}}{\partial s} = 0 + \frac{\partial L_{hid}}{\partial s} = z - z_{true} - \frac{\partial L_{hid}}{\partial z}$.

[Martins and Niculae, 2019]
Straight-Through Estimator
Revisited

- In the forward pass, $z = \arg \max(s)$.
Straight-Through Estimator
Revisited

• In the forward pass, \(z = \text{arg max}(s) \).
• if we had labels (multi-task learning), \(L_{\text{MTL}} = L(\hat{\text{y}}(z), y) + L_{\text{hid}}(s, z^{\text{true}}) \)
Straight-Through Estimator
Revisited

- In the forward pass, $z = \text{arg max}(s)$.
- if we had labels (multi-task learning), $L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}})$
- One choice: perceptron loss $L_{\text{hid}}(s, z^{\text{true}}) = s^T z - s^T z^{\text{true}}$. $\frac{\partial L_{\text{hid}}}{\partial s} = z - z^{\text{true}}$.

[Martins and Niculae, 2019]
Straight-Through Estimator
Revisited

- In the forward pass, $z = \arg \max(s)$.
- If we had labels (multi-task learning), $L_{MTL} = L(\hat{y}(z), y) + L_{hid}(s, z^{true})$
- One choice: perceptron loss $L_{hid}(s, z^{true}) = s^T z - s^T z^{true}$, $\frac{\partial L_{hid}}{\partial s} = z - z^{true}$.
- We don’t have labels! Induce labels by “pulling back” the downstream target: the “best” (unconstrained) latent value would be: $\arg \min_{\tilde{z} \in \mathbb{R}^d} L(\hat{y}(\tilde{z}), y)$

[Martins and Niculae, 2019]
depth-spin.github.io/tutorial
Straight-Through Estimator
Revisited

- In the forward pass, \(z = \arg \max(s) \).
- If we had labels (multi-task learning), \(L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}}) \).
- One choice: perceptron loss \(L_{\text{hid}}(s, z^{\text{true}}) = s^T z - s^T z^{\text{true}} \), \(\frac{\partial L_{\text{hid}}}{\partial s} = z - z^{\text{true}} \).
- We don’t have labels! Induce labels by “pulling back” the downstream target: the “best” (unconstrained) latent value would be: \(\arg\min_{\tilde{z} \in \mathbb{R}^D} L(\hat{y}(\tilde{z}), y) \).
- One gradient descent step starting from \(z \): \(z^{\text{true}} \leftarrow z - \frac{\partial L}{\partial z} \).
Straight-Through Estimator
Revisited

- In the forward pass, \(z = \arg \max(s) \).
- if we had labels (multi-task learning), \(L_{MTL} = L(\hat{y}(z), y) + L_{hid}(s, z^{\text{true}}) \)
- One choice: perceptron loss \(L_{hid}(s, z^{\text{true}}) = s^T z - s^T z^{\text{true}} \), \(\frac{\partial L_{hid}}{\partial s} = z - z^{\text{true}} \).
- We don’t have labels! Induce labels by “pulling back” the downstream target: the “best” (unconstrained) latent value would be: \(\arg \min_{\tilde{z} \in \mathbb{R}^D} L(\hat{y}(\tilde{z}), y) \)
- One gradient descent step starting from \(z \): \(z^{\text{true}} \leftarrow z - \frac{\partial L}{\partial z} \)

\[
\frac{\partial L_{MTL}}{\partial s} = \frac{\partial L}{\partial s} + \underbrace{\frac{\partial L_{hid}}{\partial s}}_{=0}
\]
Straight-Through Estimator
Revisited

- In the forward pass, $z = \arg \max(s)$.
- If we had labels (multi-task learning), $L_{MTL} = L(\hat{y}(z), y) + L_{hid}(s, z^{true})$
- One choice: perceptron loss $L_{hid}(s, z^{true}) = s^T z - s^T z^{true}$, $\frac{\partial L_{hid}}{\partial s} = z - z^{true}$.
- We don’t have labels! Induce labels by “pulling back” the downstream target: the “best” (unconstrained) latent value would be: $\arg \min_{z \in \mathcal{D}} L(\hat{y}(z), y)$
- One gradient descent step starting from z: $z^{true} \leftarrow z - \frac{\partial L}{\partial z}$

$$\frac{\partial L_{MTL}}{\partial s} = \frac{\partial L}{\partial s} + \frac{\partial L_{hid}}{\partial s} = z - \left(z - \frac{\partial L}{\partial z} \right) = \frac{\partial L}{\partial z}$$
Straight-Through in the structured case

- Structured STE: perceptron update with induced annotation

\[\arg \min_{\mu \in \mathbb{R}^D} L(\hat{y}(\mu), y) \approx z - \nabla_z L(z) \rightarrow z^{\text{true}} \]

(one step of gradient descent)

\[z^{\text{true}} = z - \nabla_z L(z) \]
Straight-Through in the structured case

- Structured STE: perceptron update with induced annotation

\[
\arg \min_{\mu \in \mathbb{R}^D} L(\hat{y}(\mu), y) \approx z - \nabla_z L(z) \to z^{\text{true}}
\]

(one step of gradient descent)

- SPIGOT takes into account the constraints; uses the induced annotation

\[
\arg \min_{\mu \in \mathcal{M}} L(\hat{y}(\mu), y) \approx \text{Proj}_\mathcal{M}(z - \nabla_z L(z)) \to z^{\text{true}}
\]

(one step of projected gradient descent!)
Structured STE: perceptron update with induced annotation

\[
\arg \min_{\mu \in \mathbb{R}^D} L(\hat{y}(\mu), y) \approx z - \nabla_z L(z) \rightarrow z^{\text{true}}
\]

(one step of gradient descent)

SPIGOT takes into account the constraints; uses the induced annotation

\[
\arg \min_{\mu \in \mathcal{M}} L(\hat{y}(\mu), y) \approx \text{Proj}_{\mathcal{M}} (z - \nabla_z L(z)) \rightarrow z^{\text{true}}
\]

(one step of projected gradient descent!)

We discuss a generic way to compute the projection in part 4.

[Peng et al., 2018, Martins and Niculae, 2019]
Summary: Straight-Through Estimator

We saw how to use the Straight-Through Estimator (STE) to allow learning models with argmax in the middle of the computation graph. We were optimizing $L(z(x))$.

Now we will see how to apply STE for stochastic graphs, as an alternative approach to REINFORCE.
Summary: Straight-Through Estimator

We saw how to use the *Straight-Through Estimator* to allow learning models with \textit{argmax} in the middle of the computation graph.
We saw how to use the *Straight-Through Estimator* to allow learning models with \(\text{argmax} \) in the middle of the computation graph.

We were optimizing \(L(\hat{z}(x)) \).
We saw how to use the *Straight-Through Estimator* to allow learning models with argmax in the middle of the computation graph.

We were optimizing $L(\hat{z}(x))$

Now we will see how to apply STE for stochastic graphs, as an alternative approach of REINFORCE.
Stochastic node in the computation graph

Recall the stochastic objective:

\[E_{\pi_{\theta}} (z_j | x) \]

\[L(z) \]

REINFORCE (previous section).

High variance.

An alternative using the reparameterization trick [Kingma and Welling, 2014].
Recall the stochastic objective:

\[E_{\pi_\theta(z|x)}[L(z)] \]
Stochastic node in the computation graph

Recall the stochastic objective:

$$E_{\pi_\theta(z|x)}[L(z)]$$

- REINFORCE (previous section).
Stochastic node in the computation graph

Recall the stochastic objective:

$$\mathbb{E}_{\pi_\theta(z|x)}[L(z)]$$

- REINFORCE (previous section). High variance. 😞
Stochastic node in the computation graph

Recall the stochastic objective:

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \]

- REINFORCE (previous section). High variance. 😞
- An alternative is using the reparameterization trick [Kingma and Welling, 2014].
Categorical reparameterization

Sampling from a categorical value in the middle of the computing graph.

\[\pi(\theta(z|x)) \propto \exp(\theta(z|x)) \]

What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?

Reparameterization: Move the stochasticity out of the gradient path. Makes \(z \) deterministic w.r.t. \(s \).
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.

\[z \sim \pi_{\theta}(z \mid x) \propto \exp s_{\theta}(z \mid x) \]
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_{\theta}(z \mid x) \propto \exp s_{\theta}(z \mid x) \]
- What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?!

[Jang et al., 2017, Maddison et al., 2016]
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_\theta(z \mid x) \propto \exp s_\theta(z \mid x) \]
- What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?!
- Reparameterization: Move the stochasticity out of the gradient path.

[Jang et al., 2017, Maddison et al., 2016]
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_{\theta}(z \mid x) \propto \exp s_{\theta}(z \mid x) \]
- What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?!
- Reparameterization: Move the stochasticity out of the gradient path.
- Makes \(z \) deterministic w.r.t. \(s \)!

[Jang et al., 2017, Maddison et al., 2016]
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_{\theta}(z \mid x) \propto \exp s_{\theta}(z \mid x) \]
- What is the gradient of a sample \(\frac{\partial z}{\partial \theta} \)?!
- Reparameterization: Move the stochasticity out of the gradient path.
- Makes \(z \) deterministic w.r.t. \(s \)!

\[s \quad s + \epsilon \quad z \]

\(\epsilon \) (stochastic)
Categorical reparameterization

- Sampling from a categorical value in the middle of the computation graph.
 \[z \sim \pi_\theta(z \mid x) \propto \exp s_\theta(z \mid x) \]
- What is the gradient of \(z \) with respect to \(\theta \)?
- Reparameterization: Move the stochasticity out of the gradient path.
 Makes \(z \) deterministic.
 As a result:
 Stochasticity is moved as an input.
 We can backpropagate through the deterministic input to \(z \).
Categorical reparameterization

\[s \rightarrow s + \epsilon \rightarrow z \]

\[\epsilon \text{ (stochastic)} \]

[Jang et al., 2017, Maddison et al., 2016]
Categorical reparameterization

How do we sample from a categorical variable?

[Jang et al., 2017, Maddison et al., 2016]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
$$p = \text{softmax}(s)$$
$$c_i = \sum_j p_j$$
$$u \sim \text{Uniform}(0, 1)$$
$$z = \text{et. s.t.} \ c_t u < c_t + 1$$

2. The Gumbel-Max trick:
$$u_i \sim \text{Uniform}(0, 1)$$
$$\varepsilon_i = -\log(-\log(u_i))$$
$$z = \arg \max(s + \varepsilon)$$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requires sampling from the Standard Gumbel Distribution $G(0, 1)$.

Derivation & more info:
- Adams, 2013
- Vieira, 2014
Sampling from a categorical variable

We want to sample from a categorical variable with scores \(s \) (class \(i \) has a score \(s_i \))

1. Inverse transform sampling:

\[
\begin{align*}
p_i &= \text{softmax}(s) \\
c_i &= \sum_j p_j \\
u &\sim \text{Uniform}(0, 1) \\
return z &= \text{sample such that } c_t u < c_t + 1
\end{align*}
\]

2. The Gumbel-Max trick:

\[
\begin{align*}
u_i &\sim \text{Uniform}(0, 1) \\
\epsilon_i &= -\log(-\log(u_i)) \\
z &= \arg \max(s + \epsilon)
\end{align*}
\]

The two methods are equivalent.

(Not obvious, but we will not prove it now.)

Requires sampling from the Standard Gumbel Distribution \(G(0, 1) \).

References:

Sampling from a categorical variable

We want to sample from a categorical variable with scores \(s \) (class \(i \) has a score \(s_i \))

1. Inverse transform sampling:
 - \(p = \text{softmax}(s) \)

2. The Gumbel-Max trick:
 - \(u_i \sim \text{Uniform}(0, 1) \)
 - \(\epsilon_i = -\log(-\log(u_i)) \)
 - \(z = \arg \max(s + \epsilon) \)

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution \(\mathcal{G}(0, 1) \). Derivation & more info:

- Adams, 2013
- Vieira, 2014
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0,1)$.

Derivation & more info:
- [Adams, 2013]
- [Vieira, 2014]
We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:

- $p = \text{softmax}(s)$
- $c_i = \sum_{j \leq i} p_j$
- $u \sim \text{Uniform}(0, 1)$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0, 1)$. Derivation & more info: [Adams, 2013], [Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

The two methods are equivalent.
(Not obvious, but we will not prove it now.)

Requiere sampling from the Standard Gumbel Distribution $G(0, 1)$.

Derivation & more info: [Adams, 2013, Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 \[
 p = \text{softmax}(s)
 \]
 \[
 c_i = \sum_{j \leq i} p_j
 \]
 \[
 u \sim \text{Uniform}(0, 1)
 \]
 \[
 \text{return } z = e_t \text{ s.t. } c_t \leq u < c_{t+1}
 \]

2. The Gumbel-Max trick:
 \[
 \epsilon_i = -\log(-\log(u_i))
 \]
 \[
 z = \arg\max (s + \epsilon)
 \]
 The two methods are equivalent. (Not obvious, but we will not prove it now.)

 Requires sampling from the Standard Gumbel Distribution $G(0, 1)$.

Reference & more info:
- Adams, 2013
- Vieira, 2014
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick:
 - $u_i \sim \text{Uniform}(0, 1)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requires sampling from the Standard Gumbel Distribution $G(0, 1)$.
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick:
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$

The two methods are equivalent. (Not obvious, but we will not prove it now.) Requires sampling from the Standard Gumbel Distribution $G(0, 1)$.

Derivation & more info: [Adams, 2013, Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. **Inverse transform sampling:**
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. **The Gumbel-Max trick:**
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \arg\max(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requires sampling from the Standard Gumbel Distribution $G(0, 1)$.

Derivation & more info: [Adams, 2013], [Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick:
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \text{arg max}(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t \leq u < c_{t+1}$

2. The Gumbel-Max trick:
 - $u_i \sim \text{Uniform}(0, 1)$
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \arg \max(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)
Requires sampling from the Standard Gumbel Distribution $G(0,1)$.

Sampling from a categorical variable

We want to sample from a categorical variable with scores \(s \) (class \(i \) has a score \(s_i \))

1. **Inverse transform sampling:**
 - \(p = \text{softmax}(s) \)
 - \(c_i = \sum_{j \leq i} p_j \)
 - \(u \sim \text{Uniform}(0, 1) \)
 - return \(z = e_t \text{ s.t. } c_t \leq u < c_{t+1} \)

2. **The Gumbel-Max trick:**
 - \(u_i \sim \text{Uniform}(0, 1) \)
 - \(\epsilon_i = -\log(-\log(u_i)) \)
 - \(z = \text{arg max}(s + \epsilon) \)

The two methods are equivalent. *(Not obvious, but we will not prove it now.)*

Requires sampling from the Standard Gumbel Distribution \(G(0, 1) \).

Derivation & more info: [Adams, 2013, Vieira, 2014]
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling:
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0, 1)$
 - return $z = e_t$ s.t. $c_t < c_t + 1$

2. The Gumbel-Max trick:
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \text{arg max}(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requiere sampling from the Standard Gumbel Distribution $\mathcal{G}(0, 1)$.

References:
- Adams, 2013
- Vieira, 2014
Sampling from a categorical variable

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. **Inverse transform sampling:**
 - $p = \text{softmax}(s)$
 - $c_i = \sum_{j \leq i} p_j$
 - $u \sim \text{Uniform}(0,1)$
 - return $z = e_t$ s.t. $c_t < c_{t+1}$

2. **The Gumbel-Max trick:**
 - $\epsilon_i = -\log(-\log(u_i))$
 - $z = \text{arg max}(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

Requiere sampling from the Standard Gumbel Distribution $G(0,1)$.

Derivation & more info: [Adams, 2013, Vieira, 2014]
Straight-Through Gumbel Estimator

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

[Jang et al., 2017, Maddison et al., 2016]

Forward: $z = \arg \max (s + \epsilon)$

Backward: pretend we had $\tilde{p} = \text{softmax}(s + \epsilon)$

What about the structured case?
Straight-Through Gumbel Estimator

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

- **Forward:** $z = \arg\max(s + \epsilon)$

```
\[
\begin{align*}
\epsilon &= -\log(-\log(u_i)) \\
u_i &\sim U(0,1)
\end{align*}
\]
```
Straight-Through Gumbel Estimator

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

- Forward: $z = \arg \max (s + \epsilon)$
- Backward: pretend we had done $\tilde{p} = \text{softmax}(s + \epsilon)$

\[\epsilon_i = -\log(-\log(u_i)) \quad u_i \sim U(0,1)\]
Straight-Through Gumbel Estimator

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

- **Forward**: $z = \text{arg max}(s + \epsilon)$
- **Backward**: pretend we had done

 $\tilde{p} = \text{softmax}(s + \epsilon)$

What about the structured case?

$\epsilon_i = \log(-\log(u_i))$

$u_i \sim \text{U}(0, 1)$
Dealing with the combinatorial explosion

1. Incremental structures
 - Build structure greedily, as sequence of discrete choices (e.g., shift-reduce).
 - Scores (partial structure, action) tuples.
 - **Advantages:** flexible, rich histories.
 - **Disadvantages:** greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts
 - Optimizes globally (e.g., Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
 - Scores smaller parts.
 - **Advantages:** optimal, elegant, can handle hard & global constraints.
 - **Disadvantages:** strong assumptions.
Sampling from incremental structures

Build a structure as a sequence of discrete choices (e.g., shift-reduce).
Assign a score to any (parallel structure, action) tuple.
Reparameterize the scores with Gumbel-Max; now we have a deterministic node.

Forward: the argmax from the reparameterized scores for each step.

Backward: pretend we had used a differentiable surrogate function.
Example: GumbelTree-LSTM [Cho et al., 2018].

deep-spin.github.io/tutorial
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max - now we have a deterministic node.
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max - now we have a deterministic node.
- **Forward**: the argmax from the reparameterized scores for each step

Example: GumbelTree-LSTM [Cho et al., 2018]
Sampling from incremental structures

• Build a structure as a sequence of discrete choices (e.g., shift-reduce)
• Assigns a score to any (partial structure, action) tuple.
• Reparameterize the scores with Gumbel-Max - now we have a deterministic node.
• Forward: the **argmax** from the reparameterized scores for each step
• Backward: pretend we had used a **differentiable surrogate function**
Sampling from incremental structures

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max - now we have a deterministic node.
- Forward: the **argmax** from the reparameterized scores for each step
- Backward: pretend we had used a **differentiable surrogate function**

 Example: Gumbel Tree-LSTM [Choi et al., 2018].
Example: Gumbel Tree-LSTM

- Building task-specific tree structures.
- Straight-Through Gumbel-Softmax at each step to select one arc.
Sampling from factorized models
Perturb-and-MAP

Reparameterize by **perturbing the arc scores**. (inexact!)
Sampling from factorized models
Perturb-and-MAP

Reparameterize by *perturbing the arc scores*. (inexact!)

- Sample from the standard Gumbel distribution.
- $\varepsilon \sim G(0, 1)$
Sampling from factorized models
Perturb-and-MAP

Reparameterize by **perturbing the arc scores.** (inexact!)

- Sample from the standard Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.
- \(\epsilon \sim G(0, 1) \)
- \(\tilde{\eta} = \eta + \epsilon \)
Sampling from factorized models
Perturb-and-MAP

Reparameterize by perturbing the arc scores. (inexact!)

- Sample from the standard Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.
- Compute MAP (task-specific algorithm).

- $\epsilon \sim G(0, 1)$
- $\tilde{\eta} = \eta + \epsilon$
- $\arg \max_{z \in \mathcal{Z}} \tilde{\eta}^T z$
Sampling from factorized models

Perturb-and-MAP

Reparameterize by **perturbing the arc scores.** (inexact!)

- Sample from the standard Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.
- Compute MAP (task-specific algorithm).
- Backward: we could use Straight-Through with Identity.

\[\varepsilon \sim G(0, 1) \]

\[\tilde{\eta} = \eta + \varepsilon \]

\[\arg \max_{\mathbf{z}\in\mathcal{Z}} \tilde{\eta}^\top \mathbf{z} \]
Summary: Gradient surrogates

• Based on the **Straight-Through Estimator**.
• Can be used for stochastic or deterministic computation graphs.
• **Forward pass**: Get an argmax (might be structured).
• **Backpropagation**: use a function, which we hope is close to argmax.
• Examples:
 • Argmax for iterative structures and factorization into parts
 • Sampling from iterative structures and factorization into parts
Gradient surrogates: Pros and cons

Pros

• Do not suffer from the high variance problem of REINFORCE.
• Allow for flexibility to select or sample a latent structured in the middle of the computation graph.
• Efficient computation.

Cons

• The Gumbel sampling with Perturb-and-MAP is an approximation.
• Bias, due to function mismatch on the backpropagation (next section will address this problem.)
Overview

\[\mathbb{E}_{\pi_\theta(z|x)}[L(z)] \quad L(\arg \max_z \pi_\theta(z \mid x)) \]

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- Straight-Through
- SPIGOT

And more, in the next section!

Thank you!
Overview

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \quad L(\text{arg max}_z \pi_{\theta}(z \mid x)) \quad L(\mathbb{E}_{\pi_{\theta}(z|x)}[z]) \]

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)

- Straight-Through
- SPIGOT

- Structured Attn. Nets
- SparseMAP

And more, in the next section!
IV. End-to-end Differentiable Relaxations
End-to-end differentiable relaxations

1. Digging into softmax
2. Alternatives to softmax
3. Generalizing to structured prediction
4. Stochasticity and global structures
Recall: Discrete choices & differentiability

\[s = f_\theta(x) \]

\[s = f_\theta(x) \]

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]

\[\frac{\partial z}{\partial s} = 0 \text{ or } n/a \]

(\text{argmax})
One solution: smooth relaxation

\[s = f_\theta(x) \]

\[z = 1 \]
\[z = 2 \]
\[\ldots \]
\[z = N \]

\[p = \text{softmax}(s) = \mathbb{E}[z], \text{ i.e.} \]
replace \(\mathbb{E}[f(z)] \) with \(f(\mathbb{E}[z]) \)

\[\frac{\partial p}{\partial s} = \smiley \]

(softmax)

\[y = g_\phi(z, x) \]

\[p_1 \rightarrow \hat{y} \]

\[s_2 - 1 \quad s_2 \quad s_2 + 1 \]

\[0 \quad 1 \]

input

\[x \]

output

\[\hat{y} \]
One solution: smooth relaxation

\[s = f_\theta(x) \]

\[p = \text{softmax}(s) = \mathbb{E}[z], \text{ i.e. replace } \mathbb{E}[f(z)] \text{ with } f(\mathbb{E}[z]) \]

\[\frac{\partial p}{\partial s} = \begin{cases} 1 \text{ (softmax)} & \text{if } s = 1 \\ 0 & \text{otherwise} \end{cases} \]
Overview

\begin{align*}
E_{\pi_\theta(z|x)}[L(z)] & \quad L(\arg \max_z \pi_\theta(z \mid x)) \quad L(E_{\pi_\theta(z|x)}[z])
\end{align*}

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- Straight-Through
- SPIGOT

...and more, in the next section!
What is softmax?

Often defined via

\[
p_i = \frac{\exp s_i}{\sum_j \exp s_j},
\]

but where does it come from?
What is softmax?

Often defined via $p_i = \frac{\exp s_i}{\sum_j \exp s_j}$, but where does it come from?

$p \in \Delta$: probability distribution over choices
What is softmax?

Often defined via $p_i = \frac{\exp s_i}{\sum_j \exp s_j}$, but where does it come from?

$p \in \Delta$: probability distribution over choices
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\(p \in \Delta \): probability distribution over choices.
What is softmax?

Often defined via $p_i = \frac{\exp s_i}{\sum_j \exp s_j}$, but where does it come from?

$p \in \Delta$: probability distribution over choices

$p = [1/3, 1/3, 1/3]$
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\(p \in \Delta \): probability distribution over choices

Expected score under \(p \): \(\mathbb{E}_{i \sim p} s_i = p^\top s \)

\(s = [.7, .1, 1.5] \)
What is softmax?

Often defined via $p_i = \frac{\exp s_i}{\sum_j \exp s_j}$, but where does it come from?

$p \in \Delta$: probability distribution over choices

Expected score under p: $\mathbb{E}_{i \sim p} s_i = p^\top s$

argmax

$s = [.7, .1, 1.5]$
What is softmax?

Often defined via $p_i = \frac{\exp s_i}{\sum_j \exp s_j}$, but where does it come from?

$p \in \Delta$: probability distribution over choices

Expected score under p: $\mathbb{E}_{i \sim p} s_i = p^\top s$

argmax maximizes expected score
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\(p \in \Delta \): probability distribution over choices

Expected score under \(p \): \(\mathbb{E}_{i \sim p} s_i = p^\top s \)

\texttt{argmax} maximizes \textbf{expected score}

Shannon entropy of \(p \): \(H(p) = - \sum_i p_i \log p_i \)

![Diagram showing the softmax function](https://deep-spin.github.io/tutorial)
What is softmax?

Often defined via \(p_i = \frac{\exp s_i}{\sum_j \exp s_j} \), but where does it come from?

\(p \in \Delta \): probability distribution over choices

Expected score under \(p \): \(\mathbb{E}_{i \sim p} s_i = p^\top s \)

argmax maximizes expected score

Shannon entropy of \(p \): \(H(p) = -\sum_i p_i \log p_i \)

softmax maximizes expected score + entropy:

\[
\arg \max_{p \in \Delta} p^\top s + H(p)
\]
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(p \geq 0, \ p^T 1 = 1 \)
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s} + H(\mathbf{p}) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

\[
\begin{align*}
\text{maximize} & \quad \sum_j p_j s_j - p_j \log p_j \\
\text{subject to} & \quad \mathbf{p} \geq 0, \quad \mathbf{p}^\top \mathbf{1} = 1
\end{align*}
\]

Lagrangian:

\[
\mathcal{L}(\mathbf{p}, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - \mathbf{p}^\top \nu + \tau(\mathbf{p}^\top \mathbf{1} - 1)
\]
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

- maximize \(\sum_j p_j s_j - p_j \log p_j \)
- subject to \(p \geq 0, \ p^T 1 = 1 \)

Lagrangian:

\[
\mathcal{L}(p, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - p^T \nu + \tau (p^T 1 - 1)
\]

Optimality conditions (KKT):

\[
0 = \nabla_{p_i} \mathcal{L}(p, \nu, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau \\
p^T \nu = 0 \\
p \in \Delta \\
\nu \geq 0
\]
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(p \geq 0, \ p^T 1 = 1 \)

Lagrangian:

\[
L(p, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - p^T \nu + \tau (p^T 1 - 1)
\]

Optimality conditions (KKT):

\[
0 = \nabla_{p_i} L(p, \nu, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau
\]

\[
p^T \nu = 0
\]

\[
p \in \Delta
\]

\[
\nu \geq 0
\]
Variational form of softmax

Proposition. The unique solution to \(\arg\max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s} + H(\mathbf{p}) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(\mathbf{p} \geq 0, \mathbf{p}^\top \mathbf{1} = 1 \)

Lagrangian:

\(\mathcal{L}(\mathbf{p}, \boldsymbol{\nu}, \tau) = -\sum_j p_j s_j - p_j \log p_j - \mathbf{p}^\top \boldsymbol{\nu} + \tau (\mathbf{p}^\top \mathbf{1} - 1) \)

Optimality conditions (KKT):

\[0 = \nabla_{p_i} \mathcal{L}(\mathbf{p}, \boldsymbol{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau \]

\[\mathbf{p}^\top \boldsymbol{\nu} = 0 \]

\[\mathbf{p} \in \Delta \]

\[\boldsymbol{\nu} \geq 0 \]
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s} + H(\mathbf{p}) \) is given by

\[
p_j = \frac{\exp s_j}{\sum_i \exp s_i}.
\]

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(p \geq 0, \mathbf{p}^\top \mathbf{1} = 1 \)

Lagrangian:

\[
\mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -\sum_i p_i s_i - p_j \log p_j - \mathbf{p}^\top \mathbf{\nu} + \tau (\mathbf{p}^\top \mathbf{1} - 1)
\]

Optimality conditions (KKT):

\[
0 = \nabla_{p_i} \mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau
\]

\[
\mathbf{p}^\top \mathbf{\nu} = 0
\]

\[
p \in \Delta
\]

\[
\nu \geq 0
\]
Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by
\[
p_j = \frac{\exp(s_j)}{\sum_i \exp(s_i)}.
\]

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(p \geq 0, \ p^T 1 = 1 \)

Lagrangian:
\[
\mathcal{L}(p, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - p^T \nu + \tau(p^T 1 - 1)
\]

Optimality conditions (KKT):

\[
0 = \nabla_{p_i} \mathcal{L}(p, \nu, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau
\]

\[
p^T \nu = 0
\]

\[
p \in \Delta
\]

\[
\nu \geq 0
\]
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^T \mathbf{s} + H(\mathbf{p}) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:

maximize \(\sum_j p_j s_j - p_j \log p_j \)

subject to \(\mathbf{p} \geq 0, \mathbf{p}^T \mathbf{1} = 1 \)

Lagrangian:

\[
\mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -\sum_j p_j s_j - p_j \log p_j - \mathbf{p}^T \mathbf{\nu} + \tau (\mathbf{p}^T \mathbf{1} - 1)
\]

Optimality conditions (KKT):

\[
0 = \nabla_{p_i} \mathcal{L}(\mathbf{p}, \mathbf{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau
\]

\[\mathbf{p}^T \mathbf{\nu} = 0\]

\(\mathbf{p} \in \Delta \)

\(\mathbf{\nu} \geq 0 \)

Log \(p_i = s_i + \nu_i - (\tau + 1) \)

if \(p_i = 0 \), r.h.s. must be \(-\infty\),
thus \(p_i > 0 \), so \(\nu_i = 0 \).

\(p_i = \frac{\exp(s_i)}{\exp(\tau+1)} = \frac{\exp(s_i)}{Z} \)

Must find \(Z \) such that \(\sum_j p_j = 1 \).
Answer: \(Z = \sum_j \exp(s_j) \)
Variational form of softmax

Proposition. The unique solution to \(\arg \max_{p \in \Delta} p^T s + H(p) \) is given by \(p_j = \frac{\exp s_j}{\sum_i \exp s_i} \).

Explicit form of the optimization problem:
- maximize \(\sum_j p_j s_j - p_j \log p_j \)
- subject to \(p \geq 0, \ p^T 1 = 1 \)

Lagrangian:
\[
L(p, \nu, \tau) = -\sum_j p_j s_j - p_j \log p_j - p^T \nu + \tau(p^T 1 - 1)
\]

Optimality conditions (KKT):
- \(0 = \nabla_{p_j} L(p, \nu, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau \)
- \(p^T \nu = 0 \)
- \(p \in \Delta \)
- \(\nu \geq 0 \)

Log:
- \(\log p_i = s_i + \nu_i - (\tau + 1) \)
 - if \(p_i = 0 \), r.h.s. must be \(-\infty\),
 - thus \(p_i > 0 \), so \(\nu_i = 0 \).

For \(p_i = \frac{\exp(s_i)}{\exp(\tau+1)} = \frac{\exp(s_i)}{Z} \)

Must find \(Z \) such that \(\sum_j p_j = 1 \).

Answer: \(Z = \sum_j \exp(s_j) \)

So, \(p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \).

Classic result, e.g., [Boyd and Vandenberghe, 2004, Wainwright and Jordan, 2008]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]

- argmax: \(\Omega(p) = 0 \)
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg\max_{p \in \Delta} p^\top s - \Omega(p) \]

- argmax: \(\Omega(p) = 0 \)
- softmax: \(\Omega(p) = \sum_j p_j \log p_j \)
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]

- argmax: \(\Omega(p) = 0 \)
- softmax: \(\Omega(p) = \sum_j p_j \log p_j \)
- sparsemax: \(\Omega(p) = \frac{1}{2} \| p \|_2^2 \)

Niculae and Blondel, 2017, Martens and Astudillo, 2016
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]

- **argmax:** \(\Omega(p) = 0 \)
- **softmax:** \(\Omega(p) = \sum_j p_j \log p_j \)
- **sparsemax:** \(\Omega(p) = \frac{1}{2} \|p\|_2^2 \)
- **\(\alpha \)-entmax:** \(\Omega(p) = \frac{1}{\alpha(\alpha - 1)} \sum_j p_j^\alpha \)

Generalized entropy interpolates in between [Tsallis, 1988]

Used in Sparse Seq2Seq: [Peters et al., 2019] and Adaptively Sparse Transformers [Correia et al., 2019]
Generalizing softmax: Smoothed argmaxes

\[\hat{p}_\Omega(s) = \arg \max_{p \in \Delta} p^\top s - \Omega(p) \]

- argmax: \(\Omega(p) = 0 \)
- softmax: \(\Omega(p) = \sum_j p_j \log p_j \)
- sparsemax: \(\Omega(p) = \frac{1}{2}\|p\|_2^2 \)
- \(\alpha \)-entmax: \(\Omega(p) = \frac{1}{\alpha(\alpha-1)} \sum_j p_j^\alpha \)
- fusedmax: \(\Omega(p) = \frac{1}{2}\|p\|_2^2 + \sum_j |p_j - p_{j-1}| \)
- csparsemax: \(\Omega(p) = \frac{1}{2}\|p\|_2^2 + \lambda(a \leq p \leq b) \)
- csoftmax: \(\Omega(p) = \sum_j p_j \log p_j + \lambda(a \leq p \leq b) \)
The structured case: Marginal polytope

- Each vertex corresponds to one such bit vector \(z \)
- Points inside correspond to marginal distributions: convex combinations of structured objects

\[
\mu = p_1 z_1 + \ldots + p_N z_N , \; p \in \Delta.
\]

\begin{align*}
p_1 &= 0.2, \quad z_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1] \\
p_2 &= 0.7, \quad z_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0] \\
p_3 &= 0.1, \quad z_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]
\end{align*}

\[\Rightarrow \mu = [0.3, 0.7, 0.3, 0.7, 0.7, 1, 0.2].\]
Niculae et al., 2018a

argmax

$\arg\max_p \Delta_p \top s$ so$[\max$

$\arg\max_p \Delta_p \top s + H(p)$

sparsemax

$\arg\max_p \Delta_p \top s - 1/2 \|p\|_2$

MAP

$\arg\max_\mu \Delta_\mu \top \eta$

marginals

$\arg\max_\mu \Delta_\mu \top \eta + e H(\mu)$

SparseMAP

$\arg\max_\mu \Delta_\mu \top \eta - 1/2 \|\mu\|_2$

Just like so$[\max$ relaxes argmax, marginals relax MAP differently!

Unlike argmax/sparsemax, computation is not obvious!
\[\text{argmax} \quad \arg \max_{p \in \Delta} p^\top s \]

Unlike \text{argmax}/\text{so}[\max, \text{marginals relax MAP} \text{ diagramably}!\]

\[\text{SparseMAP} \quad \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta - \frac{1}{2} \|\mu\|_2^2 \]

\[\text{MAP} \quad \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta + e H(\mu) \]

\[\Delta \]

\[\mathcal{M} \]
\[
\text{argmax } \arg \max_{p \in \Delta} p^\top s
\]

\[
\text{MAP } \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta
\]
- **argmax** \(\arg \max_{p \in \Delta} p^\top s \)
- **softmax** \(\arg \max_{p \in \Delta} p^\top s + H(p) \)

- **MAP** \(\arg \max_{\mu \in \mathcal{M}} \mu^\top \eta \)

Just like **softmax** relaxes **argmax**, marginals relax **MAP**! Unlike **argmax**, computation is not obvious!
- \text{argmax} \; \arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s} \\
- \text{softmax} \; \arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s} + H(\mathbf{p}) \\
- \text{MAP} \; \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta \\
- \text{marginals} \; \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta + \tilde{H}(\mu)
argmax $\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s}$

softmax $\arg \max_{\mathbf{p} \in \Delta} \mathbf{p}^\top \mathbf{s} + H(\mathbf{p})$

MAP $\arg \max_{\mathbf{\mu} \in \mathcal{M}} \mathbf{\mu}^\top \mathbf{\eta}$

marginals $\arg \max_{\mathbf{\mu} \in \mathcal{M}} \mathbf{\mu}^\top \mathbf{\eta} + \tilde{H}(\mathbf{\mu})$

Just like softmax relaxes argmax, marginals relax MAP differentiably!
argmax $\arg\max_{p \in \Delta} p^T s$

MAP $\arg\max_{\mu \in M} \mu^T \eta$

softmax $\arg\max_{p \in \Delta} p^T s + H(p)$

marginals $\arg\max_{\mu \in M} \mu^T \eta + \tilde{H}(\mu)$

Just like softmax relaxes argmax, marginals relax MAP differentiably!

Unlike argmax/softmax, computation is not obvious!
Algorithms for specific structures

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Best structure (MAP)</th>
<th>Marginals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Kuhn-Munkres [Kuhn, 1955, Jonker and Volgenant, 1987]</td>
<td></td>
</tr>
</tbody>
</table>
Algorithms for specific structures

Sequence tagging
- Best structure (MAP)
 - Viterbi [Rabiner, 1989]

Constituent trees
- CKY [Kasami, 1966, Younger, 1967]
- [Cocke and Schwartz, 1970]

Temporal alignments
- DTW [Sakoe and Chiba, 1978]

Dependency trees

Assignments
- Kuhn-Munkres [Kuhn, 1955, Jonker and Volgenant, 1987]
- #P-complete [Valiant, 1979, Taskar, 2004]

Marginals
- Forward-Backward [Rabiner, 1989]
- Inside-Outside [Baker, 1979]
- Soft-DTW [Cuturi and Blondel, 2017]
- Matrix-Tree [Kirchhoff, 1847]
Derivatives of marginals 1: DP

Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

\[\text{input: } d \text{ tags, } n \text{ tokens, } \eta \]

\[
\alpha_1 = 0, \quad \beta_n = 0
\]

\[
\text{for } i = 2, \ldots, n \text{ do}
\]

\[
\alpha_i, k = \log \sum_{k'} \exp \left(\alpha_{i-1} - k' + \eta_U^i - k + \eta_V^k \right)
\]

\[
\beta_i, k = \log \sum_{k'} \exp \left(\beta_{i+1} + k' + \eta_U^{i+1} + k' + \eta_V^k \right)
\]

\[
Z = \sum_k \exp \alpha_n, k
\]

\[\text{return } \mu = \exp (\alpha + \beta - \log Z) \]

Marginals in a sequence tagging model.
Derivatives of marginals 1: DP

Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

Marginals in a sequence tagging model.

1. input: d tags, n tokens, $\eta_U \in \mathbb{R}^{n \times d}$, $\eta_V \in \mathbb{R}^{d \times d}$
2. initialize $\alpha_1 = 0, \beta_n = 0$
3. for $i \in 2, \ldots, n$ do
 # forward log-probabilities
 \[\alpha_{i,k} = \log \sum_{k'} \exp(\alpha_{i-1,k'} + (\eta_U)_{i,k} + (\eta_V)_{k',k}) \]
 for all k
4. for $i \in n-1, \ldots, 1$ do
 # backward log-probabilities
 \[\beta_{i,k} = \log \sum_{k'} \exp(\beta_{i+1,k'} + (\eta_U)_{i+1,k'} + (\eta_V)_{k,k'}) \]
 for all k
5. $Z = \sum_k \exp \alpha_{n,k}$
 # partition function
6. return $\mu = \exp(\alpha + \beta - \log Z)$
 # marginals
Derivatives of marginals 1: DP

Dynamic programming: marginals by **Forward-Backward**, **Inside-Outside**, etc.

- Alg. consists of differentiable ops: PyTorch autograd can handle it! (v. bad idea)

Marginals in a sequence tagging model.

1. **Input**: d tags, n tokens, $\eta_U \in \mathbb{R}^{n \times d}$, $\eta_V \in \mathbb{R}^{d \times d}$
2. **Initialize** $\alpha_1 = 0, \beta_n = 0$
3. **For** $i \in 2, \ldots, n$ **do**
 - $\alpha_{i,k} = \log \sum_{k'} \exp \left(\alpha_{i-1,k'} + (\eta_U)_{i,k} + (\eta_V)_{k',k} \right)$
 for all k
4. **For** $i \in n - 1, \ldots, 1$ **do**
 - $\beta_{i,k} = \log \sum_{k'} \exp \left(\beta_{i+1,k'} + (\eta_U)_{i+1,k'} + (\eta_V)_{k,k'} \right)$
 for all k
5. $\mathbf{Z} = \sum_k \exp \alpha_{n,k}$
 - # partition function
6. **Return** $\mu = \exp \left(\alpha + \beta - \log \mathbf{Z} \right)$
 - # marginals
Derivatives of marginals 1: DP

Dynamic programming: marginals by **Forward-Backward**, **Inside-Outside**, etc.

- Alg. consists of differentiable ops: PyTorch autograd can handle it! (v. bad idea)
- Better book-keeping: Li and Eisner [2009], Mensch and Blondel [2018]

Marginals in a sequence tagging model.

1. input: \(d\) tags, \(n\) tokens, \(\eta_U \in \mathbb{R}^{n \times d}\), \(\eta_V \in \mathbb{R}^{d \times d}\)
2. initialize \(\alpha_1 = 0, \beta_n = 0\)
3. for \(i \in 2, \ldots, n\) do
 # forward log-probabilities
4. \(\alpha_{i,k} = \log \sum_{k'} \exp (\alpha_{i-1,k'} + (\eta_U)_{i,k} + (\eta_V)_{k',k})\) for all \(k\)
5. for \(i \in n - 1, \ldots, 1\) do
 # backward log-probabilities
6. \(\beta_{i,k} = \log \sum_{k'} \exp (\beta_{i+1,k'} + (\eta_U)_{i+1,k'} + (\eta_V)_{k,k'})\) for all \(k\)
7. \(Z = \sum_k \exp \alpha_{n,k}\)
 # partition function
8. return \(\mu = \exp (\alpha + \beta - \log Z)\)
 # marginals
Derivatives of marginals 1: DP

Dynamic programming: marginals by **Forward-Backward**, **Inside-Outside**, etc.

- Alg. consists of differentiable ops: PyTorch autograd can handle it! (v. bad idea)
- Better book-keeping: Li and Eisner [2009], Mensch and Blondel [2018]
- With circular dependencies, this breaks! Can get an approximation [Stoyanov et al., 2011]

Marginals in a sequence tagging model.

1. input: d tags, n tokens, $\eta_U \in \mathbb{R}^{n \times d}$, $\eta_V \in \mathbb{R}^{d \times d}$
2. initialize $\alpha_1 = 0$, $\beta_n = 0$
3. for $i \in 2, \ldots, n$ do
6. $\beta_i,k = \log \sum_{k'} \exp \left(\beta_{i+1,k'} + (\eta_U)_{i+1,k'} + (\eta_V)_{k,k'} \right)$ for all k
7. $Z = \sum_k \exp \alpha_{n,k}$
8. return $\mu = \exp (\alpha + \beta - \log Z)$
Derivatives of marginals 2: Matrix-Tree

$L(s)$: Laplacian of the edge score graph

\[Z = \det L(s) \]
\[\mu = L(s)^{-1} \]
\[\nabla \mu = \nabla L^{-1} = L^{-1} \left(\frac{\partial L}{\partial \eta} \right) L^{-1} \]
Structured Attention Networks

\[\eta, \mu \]

input \(x \) → \eta → \mu → output \(y \)

La coalition aide

Liu and Lapata, 2018

Kim et al., 2017
Structured Attention Networks

\[\begin{align*}
\text{input} & \quad \eta & \quad \mu & \quad \text{output} \\
 x & & & y
\end{align*} \]

CRF marginals (from forward–backward) give a network weights \((0, 1)\).

Similar idea for projected dependency trees with inside–outside and non-projected with the Matrix-Tree theorem \cite{LiuLapata2018}.

\cite{Kimetal2017} deep-spin.github.io/tutorial
Structured Attention Networks

Input x

- $\eta(i)$: score of word i receiving attention
- $\eta(i, i+1)$: score of consecutive words receiving attention

Output y

- $\mu(i)$: probability of word i getting attention

η and μ are functions that assign scores to words based on attention mechanisms. CRF marginals from forward-backward are used to compute attention weights.

Similar idea for projected dependency trees with inside-outside and non-projected with the Matrix-Tree Theorem ([Liu and Lapata, 2018](https://deep-spin.github.io/tutorial)).

[Kim et al., 2017]
Structured Attention Networks

\[\eta(i): \text{score of word } i \text{ receiving attention} \]
\[\eta(i, i+1): \text{score of consecutive words receiving attention} \]
\[\mu(i): \text{probability of word } i \text{ getting attention} \]

CRF marginals (from forward-backward) give attention weights \(\in (0, 1)\)

[Kim et al., 2017]
Structured Attention Networks

η (dog \rightarrow on): arc score (tree constraints)

μ (dog \rightarrow on): probability of arc

CRF marginals (from \textit{forward–backward}) give attention weights $\in (0, 1)$

Similar idea for projective dependency trees with \textit{inside–outside}

[Kim et al., 2017]
Structured Attention Networks

CRF marginals (from \textit{forward–backward}) give attention weights \(\in (0, 1) \)

Similar idea for projective dependency trees with \textit{inside–outside}

and non-projective with the Matrix-Tree theorem [Liu and Lapata, 2018].
Differentiable Perturb & Parse
Extending Gumbel-Softmax to structured stochastic models

- Forward pass:
 sample structure z (approximately)

 $$z = \arg\max_{z \in Z} (\eta + \epsilon)^\top z$$

- Backward pass:
 pretend we did marginal inference

 $$\tilde{\mu} = \arg\max_{\mu \in \mathcal{M}} (\eta + \epsilon)^\top z + \tilde{H}(\mu)$$

(or some similar relaxation)
Back-propagating through marginals

Pros:

- Familiar algorithms for NLPers, (StructuredActionNetworks) all computations exact.
- Forward pass marginals are dense; (Fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
- Case-by-case algorithms required, can get tedious.
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
Back-propagating through marginals

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:

- Forward pass marginals are dense;
 - (Fixed by Perturb & MAP, at cost of rough approximation)
 - Efficient & numerically stable back-propagation through DPs is tricky;
 - (Somewhat alleviated by Menne and Blondel [2018])
- Not applicable when marginals are unavailable.
 - Case-by-case algorithms required, can get tedious.
Back-propagating through marginals

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:

- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:
- (Structured Attention Networks:) forward pass marginals are dense;
 (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky;
 (somewhat alleviated by Mensch and Blondel [2018])
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:
- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
Back-propagating through marginals

Pro:\n- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Con:\n- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
- Case-by-case algorithms required, can get tedious.
Back-propagating through marginals

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:

- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by
- Not applicable when marginals are unavailable.
- Case-by-case algorithms required, can get tedious.
Back-propagating through marginals

Pros:
- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:
- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
- Case-by-case algorithms required, can get tedious.
• argmax $\arg \max_{p \in \Delta} p^T s$

• softmax $\arg \max_{p \in \Delta} p^T s + H(p)$

• sparsemax $\arg \max_{p \in \Delta} p^T s - \frac{1}{2} \|p\|^2$

MAP $\arg \max_{\mu \in \mathcal{M}} \mu^T \eta$

marginals $\arg \max_{\mu \in \mathcal{M}} \mu^T \eta + \tilde{H}(\mu)$

[Niculae et al., 2018a]
- \textbf{argmax} \ \arg \max_{p \in \Delta} p^T s

- \textbf{softmax} \ \arg \max_{p \in \Delta} p^T s + H(p)

- \textbf{sparsemax} \ \arg \max_{p \in \Delta} p^T s - \frac{1}{2}\|p\|^2

\begin{align*}
\text{MAP} \ & \arg \max_{\mu \in \mathcal{M}} \mu^T \eta \\
\text{marginals} \ & \arg \max_{\mu \in \mathcal{M}} \mu^T \eta + \tilde{H}(\mu) \\
\text{SparseMAP} \ & \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2}\|\mu\|^2
\end{align*}
SparseMAP solution

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta - \frac{1}{2} \| \mu \|^2 \]

= \begin{array}{c}
\bullet \bullet \\
\bullet \\
\end{array} = 0.6 \begin{array}{c}
\bullet \bullet \\
\bullet \\
\end{array} + 0.4 \begin{array}{c}
\bullet \\
\end{array}

(\mu^* \text{ is unique, but may have multiple decompositions } p. \text{ Active Set recovers a sparse one.})
Algorithms for SparseMAP

$$\mu^* = \underset{\mu \in M}{\arg \max} \mu^T \eta - \frac{1}{2} \| \mu \|^2$$

This is also proj_M required by SPIGOT!
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \| \mu \|^2 \]

Linear constraints (alias, exponentially many!)

Quadratic objective
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \| \mu \|^2 \]

linear constraints
(alas, exponentially many!)

quadratic objective

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]
Algorithms for SparseMAP

$$\mu^* = \arg \max \frac{1}{2} \| \mu \|^2$$

linear constraints
(alas, exponentially many!)

Conditioned Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of M
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2 \]

linear constraints
(alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

• select a new corner of \(\mathcal{M} \)
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta - \frac{1}{2} \| \mu \|^2 \]

linear constraints (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of \(\mathcal{M} \)
- update the (sparse) coefficients of \(p \)
 - Update rules: vanilla, away-step, pairwise

[deep-spin.github.io/tutorial]
Algorithms for SparseMAP

$$\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2$$

linear constraints (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

• select a new corner of \mathcal{M}
• update the (sparse) coefficients of p
 • Update rules: vanilla, away-step, pairwise
 • Quadratic objective: Active Set
 a.k.a. Min-Norm Point, [Wolfe, 1976]
 [Martins et al., 2015, Nocedal and Wright, 1999]
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2 \]

linear constraints (alas, exponentially many!)

quadratic objective

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner
- update the (sparse)

Active Set achieves finite & linear convergence!

- Update rules: vanilla
- Quadratic objective:

\[\text{Active Set achieves finite & linear convergence!} \]

a.k.a. Min-Norm Point, [Wolfe, 1976]

[Martins et al., 2015, Nocedal and Wright, 1999]
Algorithms for SparseMAP

$$\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2$$

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of \(\mathcal{M} \)
- update the (sparse) coefficients of \(p \)
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: **Active Set**
 a.k.a. Min-Norm Point, [Wolfe, 1976]
 [Martins et al., 2015, Nocedal and Wright, 1999]

Backward pass

\(\frac{\partial \mu}{\partial \eta} \) is sparse
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu} \mu^T \eta - \frac{1}{2} \| \mu \|^2 \]

linear constraints
(alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]
- select a new corner of \(M \)
- update the (sparse) coefficients of \(p \)
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set
 a.k.a. Min-Norm Point, [Wolfe, 1976]
 [Martins et al., 2015, Nocedal and Wright, 1999]

Backward pass

\[\frac{\partial \mu}{\partial \eta} \text{ is sparse} \]
computing \(\left(\frac{\partial \mu}{\partial \eta} \right)^T dy \)
takes \(O(\dim(\mu) \cdot \text{nnz}(p^*)) \)
Algorithms for SparseMAP

\[\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2 \]

linear constraints
(alas, exponentially many!)

Conditional Gradient
[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]
- select a new corner of \(\mathcal{M} \)
- update the (sparse) coefficients of \(p \)
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: **Active Set**
 a.k.a. Min-Norm Point, [Wolfe, 1976]
 [Martins et al., 2015, Nocedal and Wright, 1999]

Completely modular: just add MAP

Backward pass
\(\partial \mu / \partial \eta \) is sparse
computing \(\left(\frac{\partial \mu}{\partial \eta} \right)^T dy \)
takes \(O(\text{dim}(\mu) \cdot \text{nnz}(p^*)) \)

Deep-Spin.github.io/tutorial
a gentleman overlooking a neighborhood situation.

a police officer watches a situation closely.

a police officer watches a situation closely. a police officer watches a situation closely.
A police officer watches a situation closely.

A gentleman overlooking a neighborhood situation.
Overview

\[\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \quad \quad L(\arg\max_z \pi_{\theta}(z \mid x)) \quad \quad L(\mathbb{E}_{\pi_{\theta}(z|x)}[z]) \]

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- Straight-Through
- SPIGOT
- Structured Attn. Nets
- SparseMAP
Structured latent variables without sampling

\[E_z[L(z)] = \sum_{z \in Z} L(\hat{y}(z)) \pi(z | x) \]
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi(\theta(z | x)) \]
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]

e.g., a TreeLSTM defined by \(z \)

How to define \(\pi_\theta(z) \)?

\[\sum_h h^2 H \partial E_L(z) \partial \theta \]

\[\pi_\theta(z) \propto \exp f_\theta(z) \]

\[\text{argmax} \]

SparseMAP

\[\text{e.g., a TreeLSTM defined by } z \]

\[\text{Exponentially large sum!} \]

All methods we've seen require sampling; hard in general.
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]

- Example: a TreeLSTM defined by \(z \)
- Parsing model, using some scorer \(f_\theta(z; x) \)

All methods we've seen require sampling; hard in general.
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

sum over all possible trees

e.g., a TreeLSTM defined by \(z \)

Exponentially large sum!

parsing model, using some scorer \(f_\theta(z; x) \)
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

How to define \(\pi_\theta \)?

- **Idea 1**: sum over all possible trees
- **Idea 2**: e.g., a TreeLSTM defined by \(z \)
- **Idea 3**: parsing model, using some scorer \(f_\theta(z; x) \)

sum over all possible trees

e.g., a TreeLSTM defined by \(z \)

parsing model, using some scorer \(f_\theta(z; x) \)
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} \left[L(\hat{y}_\phi(z)) \right] \pi_\theta(z | x) \]

How to define \(\pi_\theta \)?

- **idea 1**
 - sum over all possible trees

- **idea 2**
 - e.g., a TreeLSTM defined by \(z \)

- **idea 3**
 - parsing model, using some scorer \(f_\theta(z; x) \)

\[\sum_{h \in \mathcal{H}} \]

All methods we've seen require sampling, hard for general.
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]

How to define \(\pi_\theta \)?

- Idea 1: sum over all possible trees
- Idea 2: parsing model, using some scorer \(f_\theta(z; x) \)
- Idea 3: exponentially large sum!

All methods we've seen require sampling; hard in general.

e.g., a TreeLSTM defined by \(z \)
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

How to define \(\pi_\theta \)?

- **idea 1**: \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
- **idea 2**: softmax
- **idea 3**

sum over all possible trees

\[\sum_{h \in H} \frac{\partial \mathbb{E}[L(z)]}{\partial \theta} \]

e.g., a TreeLSTM defined by \(z \)

parsing model, using some scorer \(f_\theta(z; x) \)

Exponentially large sum!
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

How to define \(\pi_\theta \)?

- idea 1: \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
- idea 2:
- idea 3: parsing model, using some scorer \(f_\theta(z; x) \)

sum over all possible trees

\[\sum_{h \in \mathcal{H}} \frac{\partial \mathbb{E}[L(z)]}{\partial \theta} \]

e.g., a TreeLSTM defined by \(z \)

softmax

\text{Exponentially large sum! \text{All methods we've seen require sampling; hard in general.}}
Structured latent variables without sampling

\[E_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x) \]

How to define \(\pi_\theta \)?

idea 1 \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)

idea 2

idea 3

softmax

\[\sum_{h \in H} \frac{\partial E[L(z)]}{\partial \theta} \]
Structured latent variables without sampling

\[
\mathbb{E}_z[L(z)] = \sum_{z \in Z} L(\hat{y}_\phi(z)) \pi_\theta(z \mid x)
\]

How to define \(\pi_\theta\)?

All methods we’ve seen require sampling; hard in general.

idea 2

idea 3
Structured latent variables without sampling

\[
\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x)
\]

How to define \(\pi_\theta \)?

- Idea 1: \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
- Idea 2: \(\pi_\theta(z) = 1 \) if \(z = \text{MAP}(f_\theta(\cdot)) \) else 0
- Idea 3:

\[
\sum_{h \in H} \frac{\partial \mathbb{E}[L(z)]}{\partial \theta}
\]

e.g., a TreeLSTM defined by \(z \)

SparseMAP, e.g., a TreeLSTM defined by \(z \)

sum over all possible trees

deep-spin.github.io/tutorial
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]

How to define \(\pi_\theta \)?

- **Idea 1**: \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
- **Idea 2**: \(\pi_\theta(z) = 1 \) if \(z = \text{MAP}(f_\theta(\cdot)) \) else 0
- **Idea 3**: \(\pi_\theta(z) = \text{argmax} \)

E.g., a TreeLSTM defined by \(z \)
Structured latent variables without sampling

\[\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \]

How to define \(\pi_\theta \)?

- **idea 1**: \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
- **idea 2**: \(\pi_\theta(z) = 1 \) if \(z = \text{MAP}(f_\theta(\cdot)) \) else 0
- **idea 3**: \(\pi_\theta(z) \)

\[\sum_{h \in \mathcal{H}} \frac{\partial \mathbb{E}[L(z)]}{\partial \theta} \]

e.g., a TreeLSTM defined by \(z \)

sum over all possible trees

parsing model, using some scorer \(f_\theta(z; x) \)

Deep Spin's tutorial: deep-spin.github.io/tutorial
Structured latent variables without sampling

\(\mathbb{E}_z[L(z)] = \sum_{z \in \mathcal{Z}} L(\hat{y}_\phi(z)) \pi_\theta(z | x) \)

**How to define \(\pi_\theta \)?

- **idea 1** \(\pi_\theta(z) \propto \exp(f_\theta(z)) \)
- **idea 2** \(\pi_\theta(z) = 1 \) if \(z = \text{MAP}(f_\theta(\cdot)) \) else 0
- **idea 3** SparseMAP

\[\sum_{h \in \mathcal{H}} \frac{\partial \mathbb{E}_z[L(z)]}{\partial \theta} \]

- **softmax** 😱 😊
- **argmax** 😊 😞 😊
- **SparseMAP** 😊 😊
Structured latent variables without sampling

\[
\begin{align*}
\begin{array}{c}
\end{align*}
\end{array}
\]
Structured latent variables without sampling

\[E[L(z)] = .7 \times L(\cdot \cdot \cdot) + .3 \times L(\cdot \cdot \cdot) + 0 \times \cdot \cdot \cdot + \ldots \]
Structured latent variables without sampling

\[\mathbb{E}[L(z)] = 0.7 \times L(\cdot) + 0.3 \times L(\cdot) + \ldots \]

recall our shorthand \(L(z) = L(\hat{\phi}(z), y) \)
V. Conclusions
<table>
<thead>
<tr>
<th>Stanford Sentiment (Accuracy)</th>
<th>Stanford Natural Language Inference (Accuracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Socher et al., 2013]</td>
<td>[Kim et al., 2017]</td>
</tr>
<tr>
<td>Bigram Naive Bayes</td>
<td>Simple Attention 86.2</td>
</tr>
<tr>
<td>[Niculae et al., 2018b]</td>
<td>Structured Attention 86.8</td>
</tr>
<tr>
<td>DepTreeLSTM w/ CoreNLP</td>
<td>[Liu and Lapata, 2018]</td>
</tr>
<tr>
<td>83.2</td>
<td>100D Structured Attention 86.8</td>
</tr>
<tr>
<td>DepTreeLSTM w/ SparseMAP</td>
<td>[Yogatama et al., 2017]</td>
</tr>
<tr>
<td>84.7</td>
<td>100D RL-SPINN 80.5</td>
</tr>
<tr>
<td>[Corro and Titov, 2019b]</td>
<td>[Choi et al., 2018]</td>
</tr>
<tr>
<td>GCN w/ CoreNLP</td>
<td>100D ST Gumbel-Tree 82.6</td>
</tr>
<tr>
<td>83.8</td>
<td>300D - 85.6</td>
</tr>
<tr>
<td>GCN w/ Perturb-and-MAP</td>
<td>600D - 86.0</td>
</tr>
<tr>
<td>84.6</td>
<td></td>
</tr>
<tr>
<td>[Choi et al., 2018]</td>
<td>[Corro and Titov, 2019b]</td>
</tr>
<tr>
<td>ST Gumbel-Tree</td>
<td>Latent Tree + 1 GCN - 85.2</td>
</tr>
<tr>
<td>90.7</td>
<td>Latent Tree + 2 GCN - 86.2</td>
</tr>
<tr>
<td>[Havrylov et al., 2019]</td>
<td>[Havrylov et al., 2019]</td>
</tr>
<tr>
<td>TreeLSTM + tricks</td>
<td>100D TreeLSTM + tricks 84.3</td>
</tr>
<tr>
<td>90.2</td>
<td></td>
</tr>
</tbody>
</table>
Is it syntax?!

- Unlike e.g. unsupervised parsing, the structures we learn are guided by a **downstream objective** (typically discriminative).
- They don’t typically resemble grammatical structure (yet) [Williams et al., 2018] (future work: more inductive biases and constraints?)
Is it syntax?!

- Unlike e.g. unsupervised parsing, the structures we learn are guided by a **downstream objective** (typically discriminative).
- They don’t typically resemble grammatical structure (yet) [Williams et al., 2018] (future work: more inductive biases and constraints?)
- Common to compare latent structures with parser outputs. But is this always a meaningful comparison?
Syntax vs. Composition Order

CoreNLP parse, $p = 21.4\%$

★ lovely and poignant.
Syntax vs. Composition Order

$p = 22.6\%$

★ lovely and poignant .

CoreNLP parse, $p = 21.4\%$

★ lovely and poignant .

⋯
Syntax vs. Composition Order

Niculae et al., 2018b

$p = 22.6\%$

\star lovely and poignant.

CoreNLP parse, $p = 21.4\%$

$p = 15.33\%$

\star a deep and meaningful film.

$p = 15.27\%$

\star a deep and meaningful film.

CoreNLP parse, $p = 0\%$

\star a deep and meaningful film.
Conclusions

- Latent structure models are desirable for interpretability, structural bias, and higher predictive power with fewer parameters.
- Stochastic latent variables can be dealt with RL or straight-through gradients.
- Deterministic argmax requires surrogate gradients (e.g. SPIGOT).
- Continuous relaxations of argmax include SANs and SparseMAP.
- Intuitively, some of these different methods are trying to do similar things or require the same building blocks (e.g. SPIGOT and SparseMAP).
- ... we didn't even get into deep generative models! These tools apply, but there are new challenges. [Corro and Titov, 2019a, Kim et al., 2019a,b, Kawakami et al., 2019]
Overview

\[
\mathbb{E}_{\pi_{\theta}(z|x)}[L(z)] \quad L(\arg \max_z \pi_{\theta}(z \mid x)) \quad L(\mathbb{E}_{\pi_{\theta}(z|x)}[z])
\]

- REINFORCE
- Straight-Through
- Straight-Through Gumbel (Perturb & MAP)
- SPIGOT
- Structured Attn. Nets
- SparseMAP
- SparseMAP

And more, in the next section! Thank you!
Overview

$\mathbb{E}_{\pi_\theta(z|x)}[L(z)]$
$L(\arg\max_z \pi_\theta(z \mid x))$
$L(\mathbb{E}_{\pi_\theta(z|x)}[z])$

- REINFORCESPL
- Straight-Through Gumbel (Perturb & MAP)SPL,MRG
- SparseMAP$^{MAP+}$
- Straight-ThroughMAP,MRG
- SPIGOT$^{MAP+}$
- Structured Attn. NetsMRG
- SparseMAP$^{MAP+}$

Computation:

SPL: Sampling. (Simple in incremental/unstructured, hard for most global structures.)

MAP: Finding the highest-scoring structure.

MRG: Marginal inference.
Overview

\[L\left(\arg \max_z \pi_\theta(z \mid x) \right) \]

\[L\left(\mathbb{E}_{\pi_\theta(z \mid x)}[z] \right) \]

- REINFORCESPL
- Straight-Through Gumbel (Perturb & MAP)SPL,MRG
- SparseMAPMAP+
- Straight-ThroughMAP,MRG
- SPIGOTMAP+
- Structured Attn. NetsMRG
- SparseMAPMAP+

Computation:

\textit{SPL: Sampling. (Simple in incremental/unstructured, hard for most global structures.)}

\textit{MAP: Finding the highest-scoring structure.}

\textit{MRG: Marginal inference.}

Thank you!
References I

References II

References III

References VII

